giải bất phương trình 3x^2-x+1> 0
1.Giải các phương trình sau : a,7x+35=0 b, 8-x/x-7 -8 =1/x-7 2.giải bất phương trình sau : 18-3x(1-x)_< 3x^2-3x
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1.
\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)
2.đề thiếu
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Giải bất phương trình sau: (3x-1)(x+2)>0?
Vì (3x-1)(x+2)>0
=> (3x-1) và (x+2) cùng dấu
Xét trường hợp (3x-1) và (x+2) cùng dương
3x+1>0=> x>-1/3
và x+2>0=> x>-2
Xét trường hợp (3x-1) và (x+2) cùng âm
3x+1<0=> x<-1/3
và x+2<0=> x<-2
từ 2 TH trên => x>-1/3 và x<-2
Vì ( 3x -1 )( x + 2 ) > 0
=> ( 3x-1) và (x+2) cùng dấu
Xét trường hợp (3x-1) và (x+2) cùng dương
3x+1 > 0 => x > (-1/3 )
và x+2 > 0=> x > ( -2 )
Xét trường hợp (3x-1) và (x+2) cùng âm
3x+1 < 0 => x < (-1/3 )
và x+2 < 0 => x < (-2)
từ 2 TH trên => x > (-1/3 ) và x < (-2)
Theo đề ta có :
\(\left(3x-1\right)\left(x+2\right)>0\)
\(\Rightarrow3x-1< 0\)\(;x+2< 0\) hoặc \(3x-1>0\) \(;\) \(x+2>0\)
\(\Rightarrow3x< 1\)\(;x< -2\) hoặc \(3x>1\)\(;x>-2\)
\(\Rightarrow x< \frac{1}{3};x< -2\) hoặc \(x>\frac{1}{3};x>-2\)
\(\Rightarrow x< -2\) hoặc \(x>\frac{1}{3}\) thì (3x-1)(x+2) >0
nha bn,Le Nhat Phuong!
giải bất phương trình sau (2 x + 6) (x^2 + x +1)\5x^2-3x-2 > hoặc = 0
Giải bất phương trình
1) \(\dfrac{3}{x-1}+2>0\) 2) \(\dfrac{1}{3x+1}-2\le0\)
1: \(\Leftrightarrow\dfrac{3+2x-2}{x-1}>0\)
\(\Leftrightarrow\dfrac{2x+1}{x-1}>0\)
=>x>1 hoặc x<-1/2
2: \(\Leftrightarrow\dfrac{1-6x-2}{3x+1}< =0\)
\(\Leftrightarrow\dfrac{6x+1}{3x+1}>=0\)
=>x>1/3 hoặc x<=-1/6
giải các bất phương trình tích và các bất phương trình thương
b/ \(\dfrac{3x+5}{2x^2-5x+3}\)≥0
c/2x3+x+3>0
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
giải bất phương trình :
3x2-x+1>0
3x2-x+1>0
x(3x-1)+1>0
Vì 1>0 mà x(3x-1)+1>0 thì x(3x-1)>0
*)Nếu x>0 thì 3x-1>0
3x>1
x>1/3
=>x>1/3
*)Nếu x<0 thì 3x-1<0
3x<1
x<1/3
=>x<0
Vậy hoặc x>1/3 hoặc x<0 thì 3x2-x+1>0
mk ko biết giải vầy đúng chưa nhưng (mk giải theo kiến thức lớp 7)