Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:
\(\frac{-3}{x+2}< \frac{2}{3-x}\)
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{4\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow\frac{4x+16+9x+6}{30}< \frac{10x-10}{30}\)
\(\Leftrightarrow\frac{13x+22}{30}< \frac{10x-10}{30}\)
\(\Leftrightarrow13x+22< 10x-10\)
\(\Leftrightarrow13x-10x< -22-10\)
\(\Leftrightarrow3x< -33\)
\(\Leftrightarrow x< -11\)
Kl : BPT có nghiệm { x/ x<-11}
Bn tự biểu diễn nhé !
\(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
Giải bất phương trình và biểu diễn tập nghiệm trên trục số
Hộ mình với
\(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
\(\Leftrightarrow\frac{3\left(3x+5\right)}{6}-\frac{6}{6}\le\frac{2\left(x+2\right)}{6}+\frac{6x}{6}\)
\(\Rightarrow3\left(3x+5\right)-6\le2\left(x+2\right)+6x\)
\(\Leftrightarrow9x+15-6\le2x+4+6x\)
\(\Leftrightarrow9x-2x-6x\le4+6-15\)
\(\Leftrightarrow x\le-5\)
Vậy ngiệm của bpt là \(\left\{x|x\le-5\right\}\)
Biểu diễn:
.....]-5.......................-0..................................>
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:
\(\dfrac{x-2}{2}+1\)≤\(\dfrac{x-1}{3}\)
\(\dfrac{x-2}{2}+1\le\dfrac{x-1}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-2\right)}{6}+\dfrac{1.6}{6}\le\dfrac{2\left(x-1\right)}{6}\)
`<=> 3x - 6 + 6 <= 2x-2`
`<=> 3x <= 2x-2`
`<=> 3x -2x <= -2`
`<=> x <= -2`
\(\dfrac{x-2}{2}\)+1≤\(\dfrac{x-1}{3}\)
<=>\(\dfrac{3x-6}{6}\)+\(\dfrac{6}{6}\)≤\(\dfrac{2x-1}{6}\)
<=>3x-6+6≤2x-1
<=>x<-1
giải bất đẳng thức phương trình và biểu diễn tập nghiệm trên trục số :
\(\frac{7x-1}{6}+2x>\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x>6\left(16-x\right)\)
=>35x-5+60x>96-6x
=>95x+6x>96+5
=>101x>101
hay x>1
Vậy: S={x|x>1}
\(\dfrac{7x-1}{6}+2x>\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{5.\left(7x-1\right)}{30}+\dfrac{60x}{30}>\dfrac{6.\left(16-x\right)}{30}\\ \Leftrightarrow35x-5+60x>96-6x\\ \Leftrightarrow35x+60x+6x>96+5\\ \Leftrightarrow101x>101\\ \Leftrightarrow x>1\)
Em tự biểu diễn trục số nha!
\(\dfrac{1-2x}{2}-\dfrac{x+1}{3}\le2\) . Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
\(\Leftrightarrow3\left(1-2x\right)-2\left(x+1\right)< =6\)
=>3-6x-2x-2<=6
=>-8x+1<=6
=>-8x<=5
hay x>=5/8
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số x + 3 > 6
\(x+3>6\)
\(\Leftrightarrow x>6-3\)
\(\Leftrightarrow x>3\)
Biểu diễn trên trục số:
Giải bất phương trình và biểu diễn tập nghiệm trên trục số
(x-2)(2x-3)+3(x+4)<2(x+1)2-4x
=>2x^2-3x-4x+6+3x+8<2x^2+4x+2-4x
=>2x^2-4x+14<2x^2+2
=>-4x<-12
=>x>3
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a) ( 2 x + 3 ) ( 2 x − 1 ) < ( 2 x − 5 ) 2
b) ( x − 1 ) ( x + 2 ) < ( x − 1 ) 2 + 3
Giải bất phương trình và biểu diễn tập nghiệm trên trục số
\(\dfrac{x+4}{5}\) - \(\dfrac{x-2}{3}\) > 2
`(x+4)/5 - (x-2)/3 > 2`
`=> (3x+12 - 5x + 10)/15 > 2`
`=> 24 - 2x > 30`
`=> -2x > 6`
`=> x < -3`.
\(\dfrac{x+4}{5}\) \(-\) \(\dfrac{x-2}{3}\) \(>\) \(2\)
\(=\) \(\dfrac{3x+12-5x+10}{15}\) \(>\) \(2\)
\(=\) \(24-2x>30\)
\(=\) \(-2x>6\)
\(=\) \(x< -3\)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) 2x - 1 ≥ 5
b) x-2 /3 ≥ x - x-1 /2
a: 2x-1>=5
nên 2x>=6
hay x>=3
b: \(\dfrac{x-2}{3}>=x-\dfrac{x-1}{2}\)
=>2x-4>=6x-3(x-1)
=>2x-4>=6x-3x+3
=>2x-4>=3x+3
=>-x>=7
hay x<=-7
a.\(2x-1\ge5\)
\(\Leftrightarrow2x\ge6\)
\(\Leftrightarrow x\ge3\)
Vậy \(S=\left\{x|x\ge3\right\}\)
b.\(\dfrac{x-2}{3}\ge x-\dfrac{x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{6}\ge\dfrac{6x-3\left(x-1\right)}{6}\)
\(\Leftrightarrow2\left(x-2\right)\ge6x-3\left(x-1\right)\)
\(\Leftrightarrow2x-4\ge6x-3x+3\)
\(\Leftrightarrow-x\ge7\)
\(\Leftrightarrow x\le7\)
Vậy \(S=\left\{x|x\le7\right\}\)