Cho (p) y=x^2 và (d) y= (m-1)x+2
Tìm m để đthg AB tiếp xúc vs đt (0;1) vs 0 là gốc tọa độ
Bài 1. Cho (P)y=x^2/4 và đthg y=mx+n. Xác định các hệ số m,n để đthg đi qua điểm A(-1,-2) và tiếp xúc vs Parabol
Đường thẳng y = mx + n đi qua điểm A ( -1 ; -2 ) nên
-2 = -m + n ,suy ra n = m-2
Phương trình đường thẳng có dạng y = mx + ( m -2 ) .Điều kiện để đường thẳng tiếp xúc với parabol là phương trình \(\frac{x^2}{4}=mx+\left(m-2\right)\) (1)
có nghiệm kép .Biến đổi (1) ta được : x2 -4.m.x - 4. ( m-2) =0 (2)
Điều kiện để ( 1 ) cũng có nghĩa là ( 2 ) có nghiệm kép là :
\(\Delta'=4m^2+4m-8=0\Leftrightarrow m^2+m-2=0\)
<=> ( m+2 ) . ( m-1 ) = 0 <=> m =-2 hoặc m = 1 .
Vậy các hệ số m , ncaanf tìm là m = -2 ; n = -4 và m =1 ; n=-1
(P) y = –x² và đt (d) y = mx + 2 ( m là tham số ) tìm m để (P) tiếp xúc (d)
PTHĐGĐ là:
-x^2-mx-2=0
=>x^2+mx+2=0
Δ=m^2-4*1*2=m^2-8
Để (P) tiếp xúc (d) thì m^2-8=0
=>\(m=\pm2\sqrt{2}\)
Cho hàm số y=(m-2)x+n (d) a> tìm m,n để (d) vuông góc vs đt x-2y=3 b> tìm m,n để (d) sog sog vs đt 3x+2y=1 c> tìm m,n để (d) trùng vs dt y- 2x+3=0
a: Để (d) vuông góc với x-2y=3 thì \(\dfrac{1}{2}\left(m-2\right)=-1\)
\(\Leftrightarrow m-2=-2\)
hay m=0
1. Trg mp vs hệ tọa độ Oxy , cho 2 đt \(d1:3x-4y-3=0,d2:12x+5y-12=0\).Viết pt đt phân giác góc nhọn tạo bởi 2 đt d1 và d2
2. Với giá trị nào của m thì đt \(d1:\dfrac{\sqrt{2}}{2}x-\dfrac{\sqrt{2}}{2}y+m=0\) tiếp xúc với đg tròn \(\left(C\right):x^2+y^2=1\)
1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác
\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)
\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)
\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)
Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)
Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)
\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2
2.
Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)
Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)
Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:
\(d\left(O;d_1\right)=R\)
\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)
\(\Rightarrow m=\pm1\)
Ta có: d1 giao d2 có tọa độ A(1;0)
nếu ta gắn A(1;0) thành O(0;0) và d2 thành trục Ox
ta có thể ngầm tưởng như sau:
áp dụng công thức tính cos giữa 2 đg thẳng d1 và d2
=> cos alpha=\(\dfrac{16}{65}\)
=> cos giữa d3: đg phân giác của góc nhọn với d2 =\(\sqrt{\dfrac{81}{130}}\)
áp dụng công thức 1+ (tan \(\dfrac{alpha}{2}\))2 =\(\dfrac{1}{cos\left(\dfrac{alpha}{2}\right)^2}\)
=> tan \(\dfrac{alpha}{2}\)=\(\sqrt{\dfrac{1}{\dfrac{81}{130}}-1}\)
tan \(\dfrac{alpha}{2}\)=\(\dfrac{7}{9}\)
mà tan alpha/2=k của d3 và d2
=> d3 có dạng y=\(\dfrac{7}{9}x\)
=> dạng d3 nếu bỏ gắn A thành O và d2 thành trục Ox sẽ có dạng
-by=\(\dfrac{7}{9}x+c\)
Vì d3 đi qua A(1;0)
=>\(-b.0=\dfrac{7}{9}.1+c\)
=>\(c=-\dfrac{7}{9}\)
=>d3:\(\dfrac{7}{9}x+by-\dfrac{7}{9}=0\)
=>\(7x+9by-7=0\)
mà cos alpha/2=\(\sqrt{\dfrac{81}{130}}=\dfrac{\text{| 7.12+9b.5 |}}{\sqrt{7^2+\left(9b\right)^2}\sqrt{12^2+5^2}}\)
\(=>\left[{}\begin{matrix}b=-\dfrac{7}{33}\\b=\dfrac{301}{219}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}7x-\dfrac{21}{11}y-7=0\\7x+\dfrac{903}{73}-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}11X-3Y-11=0\\73X+129Y-73=0\end{matrix}\right.\)
Tính cos giữa \(11X-3Y-11=0\)
và d2 thõa mãn yêu cầu nên nhận
cos giữa \(73X+129Y-73=0\)
và d2 ko thõa mãn yêu cầu nên loại
mình mới nghỉ ra cách này thôi, nên còn nhiều thiếu xót
mình mới lớp 10 ak nha :< nên thầy cô nào xem được góp ý hộ con ạ :))
1,Rut gon \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}-3}{x-9}\) voi x>0,x khac 9
2.Cho 2 đt có ptr (d) y=(m2-3)x+4 và (d') y=2mx+1 Tìm m để 2 đt (d) và (d')song song vs nhau
Bài 1:
Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)
\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)
Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$
$\Leftrightarrow m^2-2m-3=0$
$\Leftrightarrow (m+1)(m-3)=0$
$\Leftrightarrow m+1=0$ hoặc $m-3=0$
$\Leftrightarrow m=-1$ hoặc $m=3$
1) Cho đt (d) y=mx + m -2 và đt (d') y=5x -1 tìm m đẻ 2 đt song song vs nhau
2) cho pt x2 -2(m +2)x + m2 =0. Timf m đẻ pt có 2 nghiệm ttm (x1 + 3) (x2 +3) =28
3) cho đg tròn (o) đg kính AB .H là giao điểm của OA (H thuộc O,A). Qua H kẻ đg thẳng vuông góc vs AB cắt đg tròn (o) tại C và D . Gọi k là điểm thuộc cung lớn CD, I là giao điểm của AK và CD. a) chứng minh tứ giác HIKB nội tiếp. Chứng minh AI.AK =AH.AB
1
a. Cho đt (d) y=ax+b . Tìm a,b để đt đi qua điểm A(-1:3) và song song vs đt (d,)y=5x+3
b. Cho pt ax^2+3(a+1)x+2a+4=0(x là ẩn số). Tìm a để pt đã cho có hai No phân biệt x1,x2 thõa mãn x1^2+x2^2=4
2 . Cho parabol (P) y=1/2 x^2 và đt d y=mx-m+2(với m là tham số)
a) tìm m để d cắt p tại điểm có hoành độ x=4
b) CMR với mọi giá trị của m , d luôn cắt p tại hai điểm phân biệt
Bài tập 1 Cho (P) y=x^2 và đthg (D)y=-x+2
a,Tìm tọa độ giao điểm của (P) và (D)
b, Viết pt đthg (D)biết (D)song song với (D) và cắt (P)tại điểm có hoành độ -1
Bài tập 2 Cho hs y=-3x+b .Hãy xác định b nếu :
a,Đths cắt trục tung tại 3
b, Đths cắt đths y=6x+5 tại 1 điểm nằm trên trục tung
c, Đồ thị tiếp xúc hs tiếp xúc parabol y=x^2
MÌNH CẦN GẤP NHA ! CẢM ƠN Ạ!
cho hàm số y=(m-2)x+m+3 (d)
a,tìm đk của m để hàm số nghịch biến
b,tìm m để (d) cắt trục hoành tại điểm có hoành độ bằng 3. Vẽ đt(d) vs giá trị vừa tìm đc của m
c,tìm m để đt (d) và đt (d1) : y= -m2x+1 ko co diem chung