Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fds hh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 6 2019 lúc 22:40

\(1=\left(1.a+2.2b\right)^2\le\left(1^2+2^2\right)\left(a^2+4b^2\right)=5\left(a^2+4b^2\right)\)

\(\Rightarrow a^2+4b^2\ge\frac{1}{5}\)

Dấu "=" khi \(a=b=\frac{1}{5}\)

Đỗ Hồng Ngọc
Xem chi tiết
Hiếu
24 tháng 4 2019 lúc 21:18

Đặt \(T=a^2+4b^2\)(1)

Vì a+4b=1 => a=1-4b

Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)

<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)

=> \(T\ge\frac{1}{5}\left(đpcm\right)\)

Cố Tử Thần
8 tháng 6 2019 lúc 15:01

trả lời

anh ơi cái anyf dùng bất đẳng thức

(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ

cách này nhanh hơn đó ạ

hok tốt

hung
Xem chi tiết
Vũ Đức Huy
Xem chi tiết
Lightning Farron
17 tháng 3 2017 lúc 22:10

thỏa mãn cái j ? chứng minh cái gì ? đề quá ẩu

Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 8:58

Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)

Khách vãng lai đã xóa
adfghjkl
Xem chi tiết
Lightning Farron
30 tháng 4 2017 lúc 20:38

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+4\right)\left(a^2+4b^2\right)\ge\left(a+4b\right)^2\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge\left(a+4b\right)^2\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge\left(a+4b\right)^2=1^2=1\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge1\Rightarrow a^2+4b^2\ge\dfrac{1}{5}\)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{5}\)

sjbjscb
Xem chi tiết
Phạm Minh Quang
5 tháng 10 2019 lúc 23:26

@Nguyễn Việt Lâm

Phạm Minh Quang
5 tháng 10 2019 lúc 23:27

@Vũ Minh Tuấn

Hoàng Hồng Nhung
Xem chi tiết
tran thu ha
Xem chi tiết
Hoàng Tuấn Kiệt
3 tháng 6 2020 lúc 12:27
Mấy bbobbonj Điên ăn cơm chiên
Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 6 2020 lúc 12:39

Đề sai không ạ?

Khách vãng lai đã xóa