Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nanh
Xem chi tiết
Hoàng Đạt
7 tháng 5 2018 lúc 21:35

ngủ đi 

Nanh
7 tháng 5 2018 lúc 21:37

giúp đi mà

Anh Vũ Phúc
7 tháng 5 2018 lúc 21:54

học gì mà ....... vậy

Giang Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 19:33

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

Đinh Thị Ngọc Anh
Xem chi tiết
DA NANG
Xem chi tiết
BẢO HAM HỌC
Xem chi tiết

a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BCEF là tứ giác nội tiếp đường tròn đường kính BC

Kẻ tiếp tuyến Ax của (O)

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)

nên \(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔADB vuông tại D và ΔACK vuông tại C có

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB~ΔACK

=>\(\dfrac{AD}{AC}=\dfrac{AB}{AK}\)

=>\(AD\cdot AK=AB\cdot AC\)

Na Asu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 21:20

b) Ta có: CH\(\perp\)AB(gt)

BK\(\perp\)AB(ΔABK vuông tại B)

Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)

Ta có: BH\(\perp\)AC(gt)

CK\(\perp\)AC(ΔACK vuông tại C)

Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)

Xét tứ giác BHCK có 

CH//BK(cmt)

BH//CK(cmt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 21:18

a) Xét (O) có 

ΔABK nội tiếp đường tròn(A,B,K∈(O))

AK là đường kính(gt)

Do đó: ΔABK vuông tại B(Định lí)

Xét (O) có

ΔACK nội tiếp đường tròn(A,C,K∈(O))

AK là đường kính(gt)

Do đó: ΔACK vuông tại C(Định lí)

Wolf
Xem chi tiết
Cô Hoàng Huyền
5 tháng 5 2017 lúc 10:43

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [B, S] Đoạn thẳng p: Đoạn thẳng [C, S] Đoạn thẳng q: Đoạn thẳng [A, K] Đoạn thẳng r: Đoạn thẳng [B, K] Đoạn thẳng s: Đoạn thẳng [A, I] Đoạn thẳng t: Đoạn thẳng [K, C] Đoạn thẳng a: Đoạn thẳng [A, D] Đoạn thẳng d: Đoạn thẳng [B, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng e: Đoạn thẳng [M, D] Đoạn thẳng f_1: Đoạn thẳng [E, I] Đoạn thẳng g_1: Đoạn thẳng [D, I] O = (4.6, -0.76) O = (4.6, -0.76) O = (4.6, -0.76) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm K: Giao điểm của c, f Điểm K: Giao điểm của c, f Điểm K: Giao điểm của c, f Điểm I: Giao điểm của j, g Điểm I: Giao điểm của j, g Điểm I: Giao điểm của j, g Điểm F: Giao điểm của f, k Điểm F: Giao điểm của f, k Điểm F: Giao điểm của f, k Điểm S: Giao điểm của k, l Điểm S: Giao điểm của k, l Điểm S: Giao điểm của k, l Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm L: Giao điểm của k, m_1 Điểm L: Giao điểm của k, m_1 Điểm L: Giao điểm của k, m_1 Điểm E: Giao điểm của b, q Điểm E: Giao điểm của b, q Điểm E: Giao điểm của b, q Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C

a. Ta thấy ngay tứ giác ABLF có hai góc đối bằng 900 và tứ giác AIFC có \(\widehat{AIC}=\widehat{AFC}=90^o\) nên chúng đều là các tứ giác nội tiếp.

b. Ta thấy đường kính AK vuông góc với dây cung CD tại K nên K là trung điểm CD. Vậy ACD là tam giác cân tại A hay AK là phân giác. Từ đó suy ra cung CK = cung CK hay \(\widehat{LCK}=\widehat{KBC}\)

Vậy thì \(\Delta LCK\sim\Delta CBK\left(g-g\right)\Rightarrow\frac{KL}{KC}=\frac{KC}{KB}\Rightarrow KL.KB=KC^2.\)

c. Ta thấy \(\Delta LFK\sim\Delta LBS\left(g-g\right)\Rightarrow\frac{LF}{LB}=\frac{LK}{LS}\left(1\right)\)

\(\Delta LCK\sim\Delta LBD\left(g-g\right)\Rightarrow\frac{LK}{LD}=\frac{LC}{LB}\left(2\right)\)

Từ (1), (2) suy ra \(\frac{LF}{LB}:\frac{LC}{LB}=\frac{LK}{LS}:\frac{LK}{LD}\Rightarrow\frac{LF}{LC}=\frac{LD}{LS}\)

\(\Rightarrow LF.LS=LC.LD\Rightarrow LF\left(SD+DL\right)=\left(LF+FC\right)LD\)

\(\Rightarrow LF.SD+LF.DL=LF.DL+FC.LD\Rightarrow LF.DS=FC.LD\)

\(=\frac{LD}{DS}=\frac{LF}{FC}\left(đpcm\right)\)

Cao Bảo
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 21:41

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

Akai Haruma
25 tháng 3 2021 lúc 21:46

Hình vẽ:

undefined

nguyễn thị linh nhi
Xem chi tiết