Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HYB
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 11:30

4:

Gọi I là trung điểm của BC

K là giao của OI với DA'

M là giao của EI với CF

N đối xứng D qua I

ΔOBC cân tại O có OI là trung tuyến

nên OI vuông góc BC

=>OI//AD

=>OK//AD

ΔADA' có OA=OA' OK//AD

=>KD=KA'

ΔDNA' có ID=IN và KD=KA'

nên IK//NA'

=>NA' vuông góc BC

góc BEA'=góc BNA'=90 độ

=>BENA' nội tiếp

=>góc EA'B=góc ENB

góc EA'B=góc AA'B=góc ACB

=>góc ENB=góc ACB

=>NE//AC

=>DE vuông góc EN

Xét ΔIBE và ΔICM có

góc EIB=góc CIm

IB=IC

góc IBE=góc ICM

=>ΔIBE=ΔICM

=>IE=IM

ΔEFM vuông tại F

=>IE=IM=IF
DENM có IE=IM và ID=IN nên DENM là hình bình hành

=>DENM là hình chữ nhật(Vì DE vuông góc EN)

=>IE=ID=IN=IM

=>ID=IE=IF

=>I là tâm đường tròn ngoại tiếp ΔDEF

mà I cố định 

nên tâm đường tròn ngoại tiếp ΔDEF là một điểm cố định

Trung Nguyễn Thành
Xem chi tiết
Lợn Lười
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Le Minh Hieu
Xem chi tiết
juni
Xem chi tiết
juni
29 tháng 3 2020 lúc 16:51

ai giúp mình với ạ

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
1 tháng 4 2020 lúc 14:57

A B C M O D

a . i ) Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO 

Tương tự : = > DMOB nội tiếp 

ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)

Tương tự OD là phân giác \(\widehat{BOM}\)

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)

Ta có : CMOA , OBDM nội tiếp 

\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O) 

b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O) 

Mà \(DM=DB\Rightarrow\Delta DMB\) đều 

Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)

\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)

\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)

Khách vãng lai đã xóa
Hari potter
Xem chi tiết
Hari potter
Xem chi tiết
Chi Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 12:48

a: Xét tứ giác IAOC có

\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)

=>IAOC là tứ giác nội tiếp

=>I,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

IA,IC là tiếp tuyến

Do đó: IA=IC

=>I nằm trên đường trung trực của AC(1)

ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OI là đường trung trực của AC

=>OI\(\perp\)AC

c: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Ta có: OI là đường trung trực của AC

=>OI vuông góc với AC tại trung điểm của AC

mà OI cắt AC tại D

nên OI\(\perp\)AC tại D và D là trung điểm của AC

Xét tứ giác CDOE có

\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)

=>CDOE là hình chữ nhật

=>CO=DE=R

d: Xét ΔIAC có IA=IC

nên ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

Ta có: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)MB tại C

=>ΔACM vuông tại C

Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)

\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)

mà \(\widehat{IAC}=\widehat{ICA}\)

nên \(\widehat{IMC}=\widehat{ICM}\)

=>IM=IC

mà IC=IA

nên IM=IA

=>I là trung điểm của MA

=>\(MA=2\cdot IC\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(MC\cdot MB=MA^2\)

=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)

=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)

juni
Xem chi tiết
IS
29 tháng 3 2020 lúc 21:29

a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)

=> tứ giác AOMC nội tiếp đường tròn đường kính OC

tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)

=> tứ giác BOMD nội tiếp đường tròn đường kính OD

ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)

\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )

=>\(\widehat{OBM}=\widehat{AOC}\)

=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)

=>\(OC\perp OD\)(dpcm)

ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )

\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)

\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)

zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM

b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)

mà  tam giác DBM cân tại D ( t/c  2  tiếp tuyến cát nhau )

=> tam giác DBM đều (dpcm)

+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )

gọi S là diện tích cần tìm 

\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )

Khách vãng lai đã xóa
juni
30 tháng 3 2020 lúc 11:08

cho mình xin hình ạ

Khách vãng lai đã xóa