Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2019 lúc 23:37

Đề kì vậy ta?

ĐKXĐ: \(\left[{}\begin{matrix}x\le0\\x\ge\sqrt[3]{2019}\end{matrix}\right.\)

\(\Leftrightarrow2x^2+\sqrt{x^4-2019x}-\sqrt{x^4-2019x}-x=0\)

\(\Leftrightarrow2x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt có đúng 1 nghiệm

Julian Edward
17 tháng 9 2019 lúc 23:26

Nguyễn Việt Lâm giúp mk vs!!

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 19:32

ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)

\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

Do \(x>0\) nên hiển nhiên vế trái dương.

Pt vô nghiệm

Quangquang
26 tháng 12 2020 lúc 19:41

ĐKXĐ: ⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0

Do x>0x>0 nên hiển nhiên vế trái dương.

Pt vô nghiệm

Taliw
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2019 lúc 0:02

ĐKXĐ: \(x\ge-3\)

\(x^4\sqrt{x+3}-2x^4+2019x-2019=0\)

\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow x^4\left(\frac{x-1}{\sqrt{x+3}+2}\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2019\right)=0\)

\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=1\)

huỳnh hạ lâm
Xem chi tiết
Huyền Nhi
20 tháng 2 2019 lúc 21:06

a) \(x^4+2019x^2+2018x+2019\)

\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

b) \(E=2x^2-8x+1=2x^2-8x+8-7\)

\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)

Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy MinE = -7 <=> x = 2

Trần Thanh Phương
20 tháng 2 2019 lúc 21:16

b) \(E=2x^2-8x+1\)

\(E=2\left(x^2-4x+\frac{1}{2}\right)\)

\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)

\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)

\(E=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2021 lúc 22:49

Chú ý:

\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)

\(=\left(x^2+2x+2\right)^2\)

\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)+x^2+x^2+2x+1\)

\(=\left(x^2+x\right)^2+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\)

nthv_.
3 tháng 11 2021 lúc 22:50

èo =))

trần anh đức
Xem chi tiết
Hày Cưi
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
3 tháng 11 2018 lúc 19:17

Ta có :

\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)

Tương tự :

\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)

\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)

....

\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)

Từ những ý trên , pt trở thành :

\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)

\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)

\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)

\(\Leftrightarrow121x-900480=0\)

\(\Leftrightarrow x=\dfrac{900480}{121}\)

Dương Thị Thu Hiền
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 22:34

ĐKXĐ: \(0\le x\le5\)

Pt tương đương:

\(\sqrt{x+3}+4\sqrt{x}+\sqrt{5-x}=2x+6\)

Ta có:

\(VT=\dfrac{1}{2}.2.\sqrt{x+3}+4.1.\sqrt{x}+\dfrac{1}{2}.2.\sqrt{5-x}\)

\(VT\le\dfrac{1}{4}\left(4+x+3\right)+2\left(1+x\right)+\dfrac{1}{4}\left(4+5-x\right)\)

\(\Rightarrow VT\le2x+6=VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=1\\\sqrt{5-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)