Giải pt: \(\sqrt{x+3}x^4=2x^4-2019x+2019\)
Cho pt \(2x^2+\sqrt{x^4-2019x}=\sqrt{x^4-2019x}+x\) . Cho biết pt đã cho có bao nhiêu nghiệm??????
(giải cụ thể nhaaaa, thenk kiu )
Đề kì vậy ta?
ĐKXĐ: \(\left[{}\begin{matrix}x\le0\\x\ge\sqrt[3]{2019}\end{matrix}\right.\)
\(\Leftrightarrow2x^2+\sqrt{x^4-2019x}-\sqrt{x^4-2019x}-x=0\)
\(\Leftrightarrow2x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có đúng 1 nghiệm
giải pt \(\sqrt{2020x-2019}+2019x+2019=\sqrt{2019x-2020}\)
ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)
\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
Do \(x>0\) nên hiển nhiên vế trái dương.
Pt vô nghiệm
ĐKXĐ: ⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0
Do x>0x>0 nên hiển nhiên vế trái dương.
Pt vô nghiệm
giải phương trình : \(\sqrt{x+3}.x^4=2.x^4-2019x+2019\)
ĐKXĐ: \(x\ge-3\)
\(x^4\sqrt{x+3}-2x^4+2019x-2019=0\)
\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2019\left(x-1\right)=0\)
\(\Leftrightarrow x^4\left(\frac{x-1}{\sqrt{x+3}+2}\right)+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2019\right)=0\)
\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=1\)
a)pt thành đa tử : x^4+2019x^2 +2018x+2019
b)tìm giá trị nhỏ nhất của E=2x^2-8x+1
a) \(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
b) \(E=2x^2-8x+1=2x^2-8x+8-7\)
\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy MinE = -7 <=> x = 2
b) \(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Giải PT: \(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2019\)
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
bài 1
1) sprt[6/(3-x)] + sprt[8/(2-x)] = 6
2) sprt[42/(5-x)] + sprt[60/(7-x)] =6
3) x4.\(\sqrt{x+3}\)=2x4+2019-2019x
giải pt : \(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}+\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}+...+\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
Ta có :
\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)
Tương tự :
\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)
\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)
....
\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)
Từ những ý trên , pt trở thành :
\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)
\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)
\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)
\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)
\(\Leftrightarrow121x-900480=0\)
\(\Leftrightarrow x=\dfrac{900480}{121}\)
GIẢI CÁC PT SAU:
\(\sqrt{x+1}+\sqrt{x-1}=4\)
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
Giải pt : \(\sqrt{x+3}+4\sqrt{x}-2x=6-\sqrt{5-x}\)
ĐKXĐ: \(0\le x\le5\)
Pt tương đương:
\(\sqrt{x+3}+4\sqrt{x}+\sqrt{5-x}=2x+6\)
Ta có:
\(VT=\dfrac{1}{2}.2.\sqrt{x+3}+4.1.\sqrt{x}+\dfrac{1}{2}.2.\sqrt{5-x}\)
\(VT\le\dfrac{1}{4}\left(4+x+3\right)+2\left(1+x\right)+\dfrac{1}{4}\left(4+5-x\right)\)
\(\Rightarrow VT\le2x+6=VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=1\\\sqrt{5-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)