câu 1:
A = √45 - √20
B = \(\frac{m^2-n^2}{m+n}+n\)
C = \(\left(\frac{1}{\sqrt{X}-1}+\frac{1}{\sqrt{X}+1}\right):\frac{X+1}{X-1}\)(với x≥0; x≠1)
a) rút gọn biểu thức
b) chứng minh rằng 0≤C<1
1. A= \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn A
b. Tìm x để A<0
c. Tìm giá trị nhỏ nhất A.
2. M=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{x+4}{x+\sqrt{x}+1}\right)\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị nguyên
3. N=\(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{a.b}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{a.b}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
a. Rút gọn N
b. Tính N khi a=\(\frac{2}{2-\sqrt{3}}\)
c. Tìm số nguyên a để N có giá trị nguyên
Gíup mình với. Cảm ơn nhiều ạ.
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
2.
a)
\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)
b)
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)
c)
\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)
1. (Ko viết lại đề nha :v)
a)
\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Vậy......
1/ a/ cho A= \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)
Tính A khi \(x=\frac{2}{2+\sqrt{3}}\)
b/ cho a,b,c là các số thức khác 0 thỏa mãn a+b+c=0 .cmr : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
2/
a/ tìm tất cả các số tự nhiên sao cho \(n^2-14n-256\) là 1 số chính phương
b/ cho a>0 ,b>0 và ab=1. tìm GTNN của biểu thức : A =\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
1. Cho M = \(\frac{x\sqrt{x}-1}{x-1}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)
a . Rút gọn M
b. Tìm x để 2P = 9
2. Cho A = \(\left(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\left(x\ge0;x\mp1\right)\)
a. Rút gọn A
b. Tìm x nguyên để A nhận giá trị nguyên
1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)
a) Rút gọn
b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)
2
a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)
b) Cho a,b số thực a≠0
CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
c) Cho a, b, c là 3 số dương
CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)
Dấu "=" xảy ra khi nào?
4
a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương
b) Tìm số nguyên P,q sao cho
\(P^2=8q+1\)
5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)
Tìm GTNN của P=xyz
5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)
\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)
\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)
Vậy..
1, A=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}\right):\frac{x-1}{\sqrt{x}}\) với x > 0
a, Rút gọn
b, Tìm x nguyên nhỏ nhất để A < 0
c, Tìm \(x\in Z\) để \(A\in Z\)
2, Rút gọn: \(\left(\frac{14}{\sqrt{14}}+\frac{\sqrt{12}+\sqrt{30}}{\sqrt{5}+\sqrt{2}}\right).\sqrt{5-\sqrt{21}}\)
3, Cho \(\left|x\right|< 1,\left|y\right|< 1\). Chứng minh \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Bạn nào giúp mk thứ 2 phải nộp rồi!!!
cho biểu thức A=\(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)với x≥0 và x≠1
a)rút gọn A
b)tìm x nguyên để C=A(B-2)có giá trị nguyên
\(M=\frac{\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)}+\frac{x-\sqrt{x}-5}{\sqrt{x}+3}=1+\frac{x-\sqrt{x}-5}{\sqrt{x}+3}\)
\(M=\frac{\sqrt{x}+3+x-\sqrt{x}-5}{\sqrt{x}+3}=\frac{x-2}{\sqrt{x}+3}=\sqrt{x}-3+\frac{7}{\sqrt{x}+3}\)
Để M nguyên \(\Leftrightarrow x\) chính phương và \(\sqrt{x}+3=Ư\left(7\right)=7\)
\(\Rightarrow\sqrt{x}+3=7\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
(\(\sqrt{x}+3\ge3\) nên chỉ cần xét các ước lớn hơn 3 của 7)
các bạn ơi mình ghi nhầm câu b
câu b của mình là:tìm x nguyên để M=\(A.\frac{\sqrt{x}+1}{2\sqrt{x}+1}+\frac{x-\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
\(A=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\frac{\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)}{1}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Ko thấy biểu thức B để làm câu b
cho biểu thức N=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)với x>0 và x≠1
a)rút gọn N
b)tìm giá trị nhỏ nhất của N
c)tìm x để biểu thức M=\(\frac{2\sqrt{x}}{N}\)nhận giá trị nguyên
a)
\(N=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)
b)
\(N=x-\sqrt{x}+1=x-2\cdot\sqrt{x}\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min N = \(\frac{3}{4}\)khi x=\(\frac{1}{4}\)
Câu c) mk ko bt, sorry nha :<
\(M=\frac{2\sqrt{x}}{x-\sqrt{x}+1}=\frac{2\sqrt{x}}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}>0\) \(\forall x>0\)
\(M-2=\frac{2\sqrt{x}}{x-\sqrt{x}+1}=\frac{-2\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}=\frac{-2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}< 0\) \(\forall x\ne1;x>0\)
\(\Rightarrow0< M< 2\Rightarrow\) để M nguyên thì \(M=1\)
\(\Rightarrow\frac{2\sqrt{x}}{x-\sqrt{x}+1}=1\Rightarrow x-3\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3\pm\sqrt{5}}{2}\) \(\Rightarrow x=\frac{7\pm3\sqrt{5}}{2}\)
1) Cho A = \(\frac{x-\sqrt{x}}{\sqrt{x}+1}\left(x>0\right)\). Tính giá trị của A khi x = 9
2) Cho biểu thức B = \(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right).\left(1-\frac{1}{x}\right)\)với x >0 ;x ≠ 1
a) Rút gọn biểu thức B
b) Tìm giá trị nguyên của x để M = A.B nhận giá trị nguyên