Tìm số tự nhiên x biết : 100× x =1×2+2×3+3×4+........99×100
Rút gọn
A= 2^100+2^99+2^98.....+2+1
B=3^100+3^99+3^98....+3+1
C=4^100+4^99+....+4+1
D=2^100- 2^99+....+2^2 - 2 + 1
E=3^100 - 3^99 + 3^98....- 3 +1
Thu gọn
M= 2 + 2^2 + 2^3 ....+ 2^100
Cho A =2+2^2+2^3+....2^100. Tìm số tự nhiên x sao cho A + 1 = 2x
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
Tìm số tự nhiên x biết:
x/98 + x-1/99 + x-2/100 + x-3/101=-4
Giúp mình nhanh nhé!!!!
Sa rang hê❤️❤️
\(\frac{x}{98}+\frac{x-1}{99}+\frac{x-2}{100}+\frac{1-3}{101}=-4\)
<=> \(\frac{x}{98}+1+\frac{x-1}{99}+1+\frac{x-2}{100}+1+\frac{x-3}{101}+1=0\)
<=> \(\frac{x+98}{98}+\frac{x+98}{99}+\frac{x+98}{100}+\frac{x+98}{101}=0\)
<=> \(\left(x+98\right)\left(\frac{1}{98}+\frac{1}{99}+\frac{1}{100}+\frac{1}{101}\right)=0\)
<=> \(x+98=0\) (do 1/98 + 1/99 + 1/100 + 1/101 khác 0)
<=> \(x=-98\)
Vậy...
1. Tìm số tự nhiên x biết \(3^x+3^{x+1}+3^{x+2}=351\).
2. Cho C=\(2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\). Hãy giải thích vì sao C chia hết cho 5.
3. Cho \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮9\). Hãy giải thích \(\overline{abcdeg}⋮9\).
4. Cho S=\(3^0+3^2+3^4+3^6+...+3^{2002}\). So sánh 8S và \(3^{2004}\).
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
Cho M = 3 x 3^2 x 3^3 x ... 3^99 x 3^100
a) hỏi M chia hết cho 4 ko vì sao
b ) tìm số tự nhiên n biết rằng 2M + 3 = 3^n
Tìm x là số tự nhiên biết :
x^2 x X^2^2 x X^2^3 x X^2^4 x ........... x X^2^99 = 5^2^100 - 5^2
Bài 1 : tìm x thuộc Z
1) (x-5) + (x-4) + (x-3) + ...... + 99 + 100 = 0
2) 3 - 5 + 7 - 9 + ...... + x = -100
Bài 2:
1) Cho A = 1! + 2! + 3! + .... + 100!
A là số nguyên tố hay hợp số
2) Viết số 34 thành tổng của 3 số tự nhiên khác nhau (chú ý lập luận)
Bài 3:
1) Một số tự nhiên chia cho 30 có số dư là r, biết rằng r ko là số tự nhiên. Tìm r?
2) Tìm số tự nhiên có 3 chữ số, biết nếu viết số đó theo thứ tự ngược lại thì ta đc 1 số là lập phương của 1 số tự nhiên
Bài 4 : CM các số sau chia hết cho 9 với mọi n thuộc N
1) 10^n -1
2) 10^n + 8
khiếp cho cả tràng dài thế đứa nào nó lm đc
có nó rảnh quá nó ms lm hết cho m T ạ
a) Cho biểu thức : A = 3 + 32 + 33 +...+ 399 + 3100. A có chia hết cho 4; cho 12 ko?
Tìm số tự nhiên n biết: 2A + 3 = 3n
b) Tính B = 1x2 + 2 x 3 + 3 x4 +...+ 99 x 100
c) tính C = 12 + 22 + 32 +...+ 992 + 1002
HELP ME PLEASEEEEEE !
Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
b)
B=1x2+2x3+3x4+...+99x100
1/B=1/(1x2)+1/(2x3)+1/(3x4)+...+1/(99x100)
1/B=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
1/B=1/1-1/100
1/B=99/100
vì 1/B=99/100=>99.B=100
B=100/99
Vậy B=100/99
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
1. Tính hợp lý :
A = \(\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-50-51\right)}{2+4+8+16...+2048}\)
B = \(\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
2. Tìm số tự nhiên x, biết :
a, 697 : \(\frac{15x+364}{x}\)=17
b, 92.4 - 27 = \(\frac{x+350}{x}\)+315
c, 720 : [ 41 - ( 2x -5)] = 40
d, (x+1) + (x+2) +...+ (x+100) = 5750
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
1) tìm hai sô tự nhiên x và y biết: 6x + 99 = 20.y
2)cho M = 1+ 3+32+33+34+...+399+3100. Tìm số dư khi chia M cho 13, chia M cho 40
giải giúp mình nha, cảm ơn m.n
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`