Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
monsiaur kite
Xem chi tiết

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

Khách vãng lai đã xóa
SANS:))$$^
1 tháng 3 2022 lúc 7:28

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

Khách vãng lai đã xóa

\(x^2=y^2+2y+13\)

\(x^2=y^2+2y+1+12\)

\(x^2=\left(y+1\right)^2+12\)

\(x^2-\left(y+1\right)^2=12\)

\(\left(x-y-1\right)\left(x+y+1\right)=12\)

Vì \(x,y\in N\Rightarrow x+y+1>x-y-1\)

Mà \(\left(x-y-1\right),\left(x+y+1\right)\inƯ\left(12\right)\)

Đến đây lập bảng là xog r bạn.

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2023 lúc 8:55

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

Ịman
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2019 lúc 6:47

x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )

Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương

+ Nếu  Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1  thay vào phương trình (1) ta có :

x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4

+ Nếu  Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .

+ Nếu  Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1

+ Vi y = 3 thay vào phương trình (1) ta có:   x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4

+ Vi y = -1 thay vào phương trình (1) ta có:  x 2 = 0 < = > x = 0

Vậy phương trình (1) có 4 nghiệm nguyên  ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}

Chi Nguyễn
Xem chi tiết
ILoveMath
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

Nhân Trần Tiến
Xem chi tiết
pham trung thanh
26 tháng 10 2017 lúc 20:00

\(x^2+2x=y^2+2y+7\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)

Đến đây bạn lập bảng ước của 7 rồi tự làm nha

nguyễn thị kim huyền
26 tháng 10 2017 lúc 20:11

x^2-y^2-2x+2y

=(x^2-y^2)-(2X-2Y)

=(x+y)(x-y)-2(x-y)

=(x-y)(x+y-2)

Nguyễn Ngô Minh Trí
5 tháng 11 2017 lúc 9:18

ban kia lam dung roi do

k tui nha

thanks

Lâm Minh Anh
Xem chi tiết
hoang phuc
28 tháng 10 2016 lúc 11:34

chiu roi

ban oi

tk nhe

Thanh Tùng DZ
29 tháng 5 2020 lúc 18:51

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

Khách vãng lai đã xóa
hello sun
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra