Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngan Le Hoang Hai
Xem chi tiết
Vân Lê
Xem chi tiết
Thu ngân
Xem chi tiết
Chi
24 tháng 2 2020 lúc 14:13

Vì tam giác ABC vuông tại A nên ta có
      BC2=AB2+AC2

       = >AC2=BC2-AB2

TỰ LÀM TIẾP

Khách vãng lai đã xóa
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 23:04

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

ducanh nguyen
Xem chi tiết
trinhnu pham
Xem chi tiết
Không Tên
10 tháng 7 2018 lúc 21:44

hình tự vẽ nhé:

Áp dụng hệ thức lượng ta có:

       \(AC^2=HC.BC=9BC\)

       \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(400+9BC=BC^2\)

\(\Leftrightarrow\)\(BC^2-9BC-400=0\)

\(\Leftrightarrow\)\(\left(BC-25\right)\left(BC+16\right)=0\)

\(\Leftrightarrow\)\(BC=25\)

 \(\Rightarrow\)\(AC^2=9.25=225\)

\(\Rightarrow\)\(AC=\sqrt{225}=15\)

     Áp dụng hệ thức lượng ta có:

              \(AB.AC=AH.BC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{20.15}{25}=12\)

trinhnu pham
10 tháng 7 2018 lúc 17:25

MÌNH CẦN BÀI 2 BÀI 1 ĐƯỢC RỒI 

ha le van
Xem chi tiết
ha le van
9 tháng 1 2016 lúc 10:35

GIẢI NHƯ THẾ NÀO HẢ BẠN?

 

ha le van
9 tháng 1 2016 lúc 10:44

các bạn giúp mình với mình vừa mới học dạng này, làm đầy đủ mình tick cho

TRẦN BẢO NHƯ
Xem chi tiết
Lê Trần Nguyên Khải
20 tháng 4 2022 lúc 16:50

Ricuksuk
Xem chi tiết
Nguyễn Ngọc Anh Minh
1 tháng 8 2023 lúc 9:44

A B C H I

a/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)

\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)

\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

Bạn tự thay số tính nốt nhé vì số hơi lẻ

b/

Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)

Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC

Xét tg vuông ABI có

\(BI=\sqrt{AB^2+IA^2}\) (pitago)

Bạn tự thay số tính nhé