Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tấn An
13 tháng 7 2018 lúc 15:43

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13,đkxđ:-1\le x\le7,\Leftrightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2=\left(x^2-6x+13\right)^2\Leftrightarrow7-x+x+1+2\sqrt{\left(7-x\right)\left(x+1\right)}=\left(x^2-6x+13\right)\left(x^2-6x+13\right)\Leftrightarrow8+2\sqrt{7x+8-x^2-x}=x^4-6x^3+13x^2-6x^3+36x^2-78x+13x^2-78x+169\Leftrightarrow8+2\sqrt{-x^2+6x+8}=x^4-12x^3+62x^2-120x+169\Leftrightarrow Bírồi:< \)

Nguyễn Tấn An
13 tháng 7 2018 lúc 15:54

\(Chot=7-x\Rightarrow x=7-t\Rightarrow\sqrt{7-x}=\sqrt{7-7+t}=\sqrt{t}và\sqrt{x+1}=\sqrt{7-t+1}=\sqrt{8-t}vàx^2-6x+13=\left(7-t\right)^2-6\left(7-t\right)+13,tacópt:\sqrt{t}+\sqrt{8-t}=49-14t+t^2-42+6t+13\Leftrightarrow\sqrt{t}+\sqrt{8-t}=t^2-8t+20=t^2-2.4.t+16+4=\left(t-4\right)^2+4\Leftrightarrow\left(\sqrt{t}+\sqrt{8-t}\right)^2=\left[\left(t-4\right)^2+4\right]^2\Leftrightarrow t-t+8+2\sqrt{8t-t^2}=...\left(bítiếp\right)\)

Lê Thị Thục Hiền
17 tháng 8 2019 lúc 22:05

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\left(đk:-1\le x\le7\right)\)

Với a,b>0 ta AD BĐT: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\) (tự CM nha haha).Dấu "=" xảy ra<=>a=b (1)

AD bđt (1) có:

\(\sqrt{7-x}+\sqrt{x+1}\le2\sqrt{\frac{7-x+x+1}{2}}\)

\(\le2\sqrt{4}\) =4 (*)

Có x2-6x+13=(x-3)2+4 \(\ge4\) (**)

Từ (*),(**) => Dấu bằng xảy ra \(< =>\left\{{}\begin{matrix}7-x=x+1\\x-3=0\end{matrix}\right.\) \(< =>\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)\(< =>x=3\)(tm điều kiện của x)

Vậy x=3

Võ Thị Kim Dung
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Hoàng Anh Thắng
12 tháng 10 2021 lúc 9:30

đội tuyển toán tự làm đi m 

Phạm Băng Băng
Xem chi tiết
jgh
Xem chi tiết
Thúy Trầnn
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Tô Thu Huyền
Xem chi tiết
*Nước_Mắm_Có_Gas*
21 tháng 10 2018 lúc 10:54

đơn giản như đan rổ

mo chi mo ni
21 tháng 10 2018 lúc 11:12

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!