Chứng minh rằng:
Với a+b+c=0 thì a^4+b^4+c^4=2(ab+bc+ca)^2
Cho\(a+b+c=0\) chứng minh rằng
\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có :
\(\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)
\(\Rightarrow dpcm\)
Chứng minh rằng :
Với a+b+c=0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
ai làm đúng giải chi tiết mik sẽ tick nha^^
a+b+c = 0
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
=> \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
=> \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
=> \(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\) ( do a+b+c = 0 )
\(=2\left(ab+bc+ca\right)^2\) (HĐT)
Chứng minh rằng nếu:
a) \(a^2+b^2+c^2=ab+ac+bc\)thì a = b = c
b) \(a^3+b^3+c^3=3abc\)thì a = b = c hoặc a+ b +c = 0
c) a + b +c = 0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
a)\(a^2+b^2+c^2=ab+bc+ca\)\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
b)\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Cho a+b+c=0. Chứng minh rằng:\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có : a + b + c = 0
( a + b + c )\(^2\) = 0
\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
Nên : \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(ab+bc+ca\right)^2\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8ab^2c+8abc^2+8a^2bc\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8abc\left(b+c+a\right)\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
Lại có : \(2\left(ab+bc+ca\right)^2\)
\(=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)
\(=2a^2b^2+2b^2c^2+2c^2a^2+4ab^2c+4abc^2+4a^2bc\)
\(=2a^2b^2+2b^2c^2+2c^2a^2+4abc\left(b+c+a\right)\)
\(=2a^2b^2+2b^2c^2+2c^2a^2\)
Vì : \(2a^2b^2+2b^2c^2+2c^2a^2=2a^2b^2+2b^2c^2=2c^2a^2\)
Vậy \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Chứng minh rằng:
a. Với a+b+c=0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
b. \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
b/ Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{1}{2}\left[\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{c^2}{a^2}\right)\right]\)
\(\ge\frac{1}{2}.\left(\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\right)=\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
CHỨNG MINH RẰNG:
a.\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)biết abc=1
b. Với a+b+c= =0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
c.\(x^2-y^2+2x-4y-10=0\) với x, y nguyên dương
a, Có: \(\hept{\begin{cases}\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}=\frac{1}{bc+b+1}\\\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{ac+c+1}\end{cases}}\)
Tương tự cho 2 phân số còn lại sau đó cộng vế theo vế ta được:
\(3S=\frac{ab+a+1}{ab+a+1}+\frac{bc+b+1}{bc+b+1}+\frac{ca+c+1}{ca+c+1}=3\Leftrightarrow S=1\)
2, Chú ý: a+b+c=0 và a+b=-c
Xét: \(A=a^4+b^4+c^4=\left(a^2+b^2\right)^2+c^2-2a^2b^2=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Mà: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\left(ab+bc+ca\right)^2\)
Vậy thay 2 biểu thức trên vào ta được: ĐPCM
c) Ta có: \(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Do x,y>0 => x+y+3>x-y-1
Vậy pt <=> \(\hept{\begin{cases}x-y-1=1\\x+y+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=2\\x+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
Vậy (x,y)=(3,1)
Chứng minh rằng với a+b+c=0 thì\(a^4\text{+}b^4+c^4=2\left(ab\text{+}bc\text{+}ac\right)^2\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
Cho a + b + c= 0 . Chứng minh rằng : a4 + b4 + c4 = 2(ab + bc +ca)2
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Bình phương hai vế:
\(\left(a^2+b^2+c^2\right)^2=[-2\left(ab+bc+ac\right)]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)(*)
\(\Leftrightarrow a^4+b^4+c^4=4[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(**)
Từ (*) và (**):
\(2\left(a^4b^4c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)