chứng minh pt x^2 – 2(m + 1)x + 2m^2 + m + 3 = 0 luôn vô nghiệm với mọi m
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
Cho pt: x²-2(m-1)x+2m-5 a, chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m b, Tìm m để pt có 2 nghiệm cùng dấu . Khi đó 2 nghiệm mang dấu gì
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm cùng dấu thì 2m-5>0
hay m>5/2
Cho pt:
2x2 + mx + m - 3 = 0
Chứng minh rằng pt có 2 nghiệm phân biệt
Cho pt:
x2 - 2(2m-1)x + 3m2 - 4 = 0
Chứng minh rằng pt luôn có nghiệm với mọi m
Tìm m để x12 + x22 - x1x2 = 5
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
x2-2(m-1)x+2m-3=0
- chứng tỏ rằng pt luôn có nghiệm với mọi giá trị của m
-gọi x(1) , x(2) là các nghiệm của pt trên . tìm m để x thoả mãn đẳng thức x12 = 2x(2)+1
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Cho pt : x2 +(m-1)x-2m-3=0
a) Giải pt khi m=-3
b) Chứng tỏ rằng pt luôn có nghiệm với mọi m
c) Gọi x1,x2 là 2 nghiệm của pt. Tìm m để : x1 +x2 =7
a, Thay \(m=-3\)vào phương trình ta có :
\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)
\(< =>x^2-4x+3=0\)
Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)
\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)
nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)
b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)
\(=m^2-2m+1+8m+12\ge0\)
\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)
\(=\left(m+8\right)\left(m-2\right)+29\ge0\)
\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )
c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)
\(< =>x_1+x_2=\frac{-m+1}{2}=7\)
\(< =>-m+1=14\)
\(< =>-m=13< =>m=-13\)
cho pt x² - 2(2m-1)x+4m²=0 a) xác định m để pt có 2 nghiệm phân biệt b) xác định m để pt vô nghiệm c) giải pt với m=2 Mọi người giúp em với ạ.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
Cho pt mx2-(2m+1)x+(m+1)=0 (1)
a, Giai pt (1) với m = 2/3
b, chứng tỏ pt (1) luôn có nghiệm với mọi giá trị của m
c. Tìm giá trị của m để pt (1) có nghiệm lớn hơn 2
b)
+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1
+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn
Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)
=> m khác 0 phương trình (1) có hai ngiệm phân biệt
Vậy pt (1) luôn có nghiệm với mọi giá trị của m
c) Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại
Với m khác 0
Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)
Khi đó áp dụng định lí Vi-et:
\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)