viếp pt đt C đi qua A(1,0) và tiếp xúc vs 2 đ.thẳng d1: x+y-4=0 và d2;x+y+2=0
1. Trg mp vs hệ tọa độ Oxy , cho 2 đt \(d1:3x-4y-3=0,d2:12x+5y-12=0\).Viết pt đt phân giác góc nhọn tạo bởi 2 đt d1 và d2
2. Với giá trị nào của m thì đt \(d1:\dfrac{\sqrt{2}}{2}x-\dfrac{\sqrt{2}}{2}y+m=0\) tiếp xúc với đg tròn \(\left(C\right):x^2+y^2=1\)
1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác
\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)
\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)
\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)
Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)
Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)
\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2
2.
Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)
Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)
Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:
\(d\left(O;d_1\right)=R\)
\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)
\(\Rightarrow m=\pm1\)
Ta có: d1 giao d2 có tọa độ A(1;0)
nếu ta gắn A(1;0) thành O(0;0) và d2 thành trục Ox
ta có thể ngầm tưởng như sau:
áp dụng công thức tính cos giữa 2 đg thẳng d1 và d2
=> cos alpha=\(\dfrac{16}{65}\)
=> cos giữa d3: đg phân giác của góc nhọn với d2 =\(\sqrt{\dfrac{81}{130}}\)
áp dụng công thức 1+ (tan \(\dfrac{alpha}{2}\))2 =\(\dfrac{1}{cos\left(\dfrac{alpha}{2}\right)^2}\)
=> tan \(\dfrac{alpha}{2}\)=\(\sqrt{\dfrac{1}{\dfrac{81}{130}}-1}\)
tan \(\dfrac{alpha}{2}\)=\(\dfrac{7}{9}\)
mà tan alpha/2=k của d3 và d2
=> d3 có dạng y=\(\dfrac{7}{9}x\)
=> dạng d3 nếu bỏ gắn A thành O và d2 thành trục Ox sẽ có dạng
-by=\(\dfrac{7}{9}x+c\)
Vì d3 đi qua A(1;0)
=>\(-b.0=\dfrac{7}{9}.1+c\)
=>\(c=-\dfrac{7}{9}\)
=>d3:\(\dfrac{7}{9}x+by-\dfrac{7}{9}=0\)
=>\(7x+9by-7=0\)
mà cos alpha/2=\(\sqrt{\dfrac{81}{130}}=\dfrac{\text{| 7.12+9b.5 |}}{\sqrt{7^2+\left(9b\right)^2}\sqrt{12^2+5^2}}\)
\(=>\left[{}\begin{matrix}b=-\dfrac{7}{33}\\b=\dfrac{301}{219}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}7x-\dfrac{21}{11}y-7=0\\7x+\dfrac{903}{73}-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}11X-3Y-11=0\\73X+129Y-73=0\end{matrix}\right.\)
Tính cos giữa \(11X-3Y-11=0\)
và d2 thõa mãn yêu cầu nên nhận
cos giữa \(73X+129Y-73=0\)
và d2 ko thõa mãn yêu cầu nên loại
mình mới nghỉ ra cách này thôi, nên còn nhiều thiếu xót
mình mới lớp 10 ak nha :< nên thầy cô nào xem được góp ý hộ con ạ :))
Viết pt Đường thẳng đi qua điểm A(-2,1) có tâm I thuộc đt (d1):x+3y+8=0và tiếp xúc với đt (d2):3x-4y+10=0
Trong mặt phẳng tọa độ Oxy, cho A(-1;3) và B(3;1), C(2;-2)
a) Viết phương trình đường trung tuyến CM của tam giác ABC
b) Viết phương trình đường tròn (C) đi qua A, B và có tâm I thuộc đường thẳng (): 3x-y-2=0
c) Viết phương trình đường thẳng (d1), biết (d1) song song với (d2): x-2y-1=0 và (d1) tiếp xúc với (C1): x^2+y^2-6x+4y+8=0
trên mặt phẳng tọa độ cho 2 đường thẳng (d1) : x-y+1=0, (d2) : x-3y-3=0 cắt nhau tại A. Hãy viết pt đường thẳng (d) đi qua M(1;1) sao cho (d1) cắt (d2) lần lượt tại tại B và C, Tam giác ABC vuông
cho 2 đường thẳng d1: 3x-y-3=0 và d2: x+y+2=0 và M(0,2). viết phương trình đường thẳng d đi qua M cắt d1 và d2 lần lượt tại A và B sao cho B là trung điểm của AM
Giúp mk vs ạ:((
Do A thuộc d1 nên tọa độ có dạng \(A\left(a;3a-3\right)\)
Do B thuộc d2 nên tọa độ có dạng: \(B\left(b;-b-2\right)\)
Áp dụng công thức trung điểm:
\(\Rightarrow\left\{{}\begin{matrix}a+0=2b\\3a-3+2=2\left(-b-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-2b=0\\3a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(-\dfrac{3}{4};-\dfrac{21}{4}\right)\\B\left(-\dfrac{3}{8},-\dfrac{13}{8}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\left(\dfrac{3}{8};\dfrac{29}{8}\right)\)
Phương trình d có dạng:
\(29x-3\left(y-2\right)=0\Leftrightarrow29x-3y+6=0\)
Viết phương trình đường tròn đi qua A(2,3) và tiếp xúc với d1: 3x-4y+1 = 0; d2: 4x + 3y-7 = 0
Gọi đường tròn tâm \(I\left(a;b\right)\Rightarrow d\left(I;d_1\right)=d\left(I;d_2\right)\)
\(\Rightarrow\dfrac{\left|3a-4b+1\right|}{5}=\dfrac{\left|4a+3b-7\right|}{5}\)
\(\Rightarrow\left[{}\begin{matrix}3a-4b+1=4a+3b-7\\3a-4b+1=-4a-3b+7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-7b+8\\b=7a-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-7b+8;b\right)\\I\left(a;7a-6\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}IA^2=\left(-7b+6\right)^2+\left(b-3\right)^2\\IA^2=\left(a-2\right)^2+\left(7a-9\right)^2\end{matrix}\right.\)
\(IA^2=d^2\left(I;d_1\right)\Rightarrow\left[{}\begin{matrix}\left(-7b+6\right)^2+\left(b-3\right)^2=\left(b-1\right)^2\\\left(a-2\right)^2+\left(7a-9\right)^2=\left(a-1\right)^2\end{matrix}\right.\)
Giờ giải pt bậc 2 là được
Tìm hệ số góc của đt d biết:
a) d đi qua điểm M(-2;1) và N(0:4)
b) d đi qua P(-1;-3) và đi qua giao điểm của 2 đt d1: y=x-7 và d2= -4x+3
Gọi đường thẳng cần tìm là \(y=kx+b\)
a/ \(\left\{{}\begin{matrix}-2k+b=1\\0.k+b=4\end{matrix}\right.\) \(\Rightarrow k=\frac{3}{2}\)
b/ Tọa độ giao điểm Q của d1 và d2: \(\left\{{}\begin{matrix}y=x-7\\y=-4x+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\) \(\Rightarrow Q\left(2;-5\right)\)
\(\left\{{}\begin{matrix}-k+b=-3\\2k+b=-5\end{matrix}\right.\) \(\Rightarrow k=-\frac{2}{3}\)
cho hai đt (d): y=-2x+1
(d1) : y=x-1
a) vẽ đồ thị (d) và (d1) trên cùng mptđ
b) xác định tọa độ giao điểm A của 2 đt (d) và (D1) bằng phép toán
c) viết pt đường thẳng (d2): y=ax+b (\(a\ne0\)) song song với đt (D1) cắt trục hoành tại điểm có hoành độ bằng 2
a)( x= 0 ; y = 1); (y=0; x= 1/2) đt1
(x=0;y = -1) ; (y=0;x= 1) đt2
b) giao điểm tức là cùng nghiệm
-2x+1 = x- 1 => x = 2/3 ; y = -1/3
A(2/3; -1/3)
c) anh xem đk // là làm dc, em mệt r
1. Cho tam giác ABC cân tại A(4:-1) . PT cạnh huyền 3x - y +5 = 0. Tìm PT 2 cạnh góc vuông.
2. Cho 2 đường thẳng: (d1) : x + y -1 = 0 ; (d2) x - 3y + 3 = 0. viết PT đường thẳng (d) đối xứng với (d1) qua (d2).