Sina / [sina + cosa × tan (a/2)]
Sin²a/Sina - cosa - Sina + cosa / tan²a -1 = Sina+ cosa
cho tan a=-2.tính A=\(\dfrac{cosa+sina}{cosa-sina}\)
\(A=\dfrac{cosa+sina}{cosa-sina}=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\left(-2\right)}{1-\left(-2\right)}=\dfrac{-1}{3}\)
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
Tính giá trị biểu thức
D=\(\dfrac{cosa+sina}{cosa-sina}\) biết tan α =\(\dfrac{1}{2}\)
Chia cả tử và mẫu cho \(cosa\)
\(D=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}=3\)
a) \(\frac{1-sina}{cosa}=\frac{cosa}{1+sina}\)
b) \(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{2}{sina}\)
c) \(\frac{cosa}{1+sina}+\frac{cosa}{1-sina}=\frac{2}{cosa}\)
Giả sử các biểu thức đều xác định
a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)
b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)
c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)
Chứng minh các hằng đẳng thức trên
Biết Cosa=3/4 tính sina cota tana
Tan a=12/35 tính sina cota cosa
tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
[cosa =-4/5=> sina =-2/5
tính tan \(a\), biết \(\dfrac{sina+cosa}{sina-cosa}\)= 3
\(\dfrac{sina+cosa}{sina-cosa}=3=>sina+cosa=3sina-3cosa\)
\(=>2sina=4cosa=>sina=2cosa\)
\(=>tana=\dfrac{sina}{cosa}=\dfrac{2cosa}{cosa}=2\)
Sina/sina- cosa - cosa/cosa - Sina = 1+cot²a /1- cot²a
Cho cosa=sinB/sinA, cosb=sinC/sinA, cos(a+b)=sinBsinC, chứng minh tan2A=tan2B+tan2C