Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Như
Xem chi tiết
ngoc phuong
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 11 2018 lúc 21:37

\(A=\dfrac{cosa+sina}{cosa-sina}=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\left(-2\right)}{1-\left(-2\right)}=\dfrac{-1}{3}\)

Hằng Vũ
Xem chi tiết
pink hà
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:21

Chia cả tử và mẫu cho \(cosa\)

\(D=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}=3\)

Trà Nguyen
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2019 lúc 23:58

Giả sử các biểu thức đều xác định

a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)

b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)

c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)

Khách vãng lai đã xóa
Trà Nguyen
23 tháng 11 2019 lúc 23:46

Chứng minh các hằng đẳng thức trên

Khách vãng lai đã xóa
Nguyễn Bá Thông
Xem chi tiết
Athanasia Karrywang
24 tháng 8 2021 lúc 15:43

tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
    [cosa =-4/5=> sina =-2/5

Khách vãng lai đã xóa
Hoàng Nguyễn Thanh Hằng
Xem chi tiết
Như Khương Nguyễn
13 tháng 10 2017 lúc 16:50

\(\dfrac{sina+cosa}{sina-cosa}=3=>sina+cosa=3sina-3cosa\)

\(=>2sina=4cosa=>sina=2cosa\)

\(=>tana=\dfrac{sina}{cosa}=\dfrac{2cosa}{cosa}=2\)

Mai Như
Xem chi tiết
Lại Ngọc Tân
Xem chi tiết