chứng minh với mọi n là số tự nhiên khác 0 thì n3 + n + 2 là hợp số
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1
Chứng minh rằng với mọi số tự nhiên n khác 0 thì các phân số sau là phân số tối giản n+1/n
Gọi d=ƯCLN(n+1;n)
=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(n+1-n⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+1;n)=1
=>\(\dfrac{n+1}{n}\) là phân số tối giản
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì số 111...12111...1(n chữ số 1) là hợp số
111...12111...1 = (111...1000...0 + 111...1) chia hết cho 111...1 nên 111...12111...1 là hợp số
Theo bài ra , ta có :
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì ( gọi số chữ số 1 là n ) :
111...12111...1 (n chữ số \(\frac{1}{n}\) chữ số 1 ) = 111...1000...0 ( n chữ số \(\frac{1}{n+1}\) chữ số 0 ) + 111...1 ( n chữ số 1 )
Vì tổng trên có 2 số hạng trên đều chia hết cho 111...1 ( n chữ số 1 ) nên số 111...12111...1 ( n chữ số\(\frac{1}{n}\)chữ số 1 ) chia hết cho 111...1 ( n chữ số 1 ) và nó lớn hơn 111...1 (n chữ số 1) nên nó là hợp số.
Vậy có đpcm
Chúc bạn học tốt =))
Theo bài ra , ta có :
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì ( gọi số chữ số 1 là n ) :
111...12111...1 (n chữ số
n
1 chữ số 1 ) = 111...1000...0 ( n chữ số
n + 1
1 chữ số 0 ) + 111...1 ( n chữ số 1
tk cho mk nha $_$
Chứng tỏ rằng với mọi Số tự nhiên n khác 0 thì số : 11...1 2 11...1 là hợp số
Đặt A=11..121..1
=>A=11..112
Vì thế A có ít nhất 3 ước là 1;11...11 và chính A
=>AA là hợp số
Tick nha
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)
là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)
A = n n + 1 n + 2 n + 3
= n n + 3 n + 1 n + 2
= n 2 + 3n n 2 + 3n + 2
= n 2 + 3n 2 − 2 n 2 + 3n
= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)
b,chứng minh rằng A= n.(n+1).(n+2).(n+3) không là số chính phương với mọi số tự nhiên n khác 0
với a, b.c.d là cá số tự nhiên khác o thỏa mãn ab=cd chứng minh rằng A=a^n +b^n+c^n+d^n là một hợp số với mọi số tự nhiên n
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì các phân số sau là tối giản
5n+14/n+3
3n-2/4n-3
a: Gọi a=UCLN(5n+14;n+3)
\(\Leftrightarrow5n+14-5n-15⋮a\)
\(\Leftrightarrow-1⋮a\)
hay a=1
=>5n+14/n+3 là phân số tối giản
b: Gọi d=UCLN(3n-2;4n-3)
\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>3n-2/4n-3 là phân số tối giản