Cho tam giác ABC vuông tại A, đương cao AH. Kẻ DE vuông góc với AB ( E thuộc AB), DH vuông góc với AC ( H thuộc AC). I là trung điểm của BC. Chứng minh:
a, Tam giác AEH đồng dạng ACB
b, AI vuông góc với EH
c, Tính \(S_{AEIH}=?\)
Cho tam giác ABC vuông tại a đường cao AH h thuộc BC biết AB = 15 cm AC = 20 cm .a)tính độ dài đoạn thẳng bc ah.b) kẻ HM vuông góc với AB HN vuông góc với AC chứng minh tam giác ahb đồng dạng với tam giác ACB .C)gọi I là trung điểm của BC k là giao điểm của AE và MN chứng minh AD vuông góc MN tại k.
Bài 1: Cho tam giác ABC vuông tại A có AB<AC. Gọi M là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E. a) Chứng minh AM=DE b) Chứng minh tứ giác DMCE là hình bình hành c) Gọi AH là đường cao của tam giác ABC ( H thuộc BC ). Chứng minh tứ giác DHME là hình thang cân và A đối xứng với H qua DE.
Mình đang cần gấp bài này sáng mai mình kiểm tra. Các bạn giúp mình nhé, cảm ơn các bạn nhiều.
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b:
MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔBAC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔBAC
=>MD//AC và \(MD=\dfrac{AC}{2}\)
\(MD=\dfrac{AC}{2}\)
\(CE=\dfrac{AC}{2}\)
Do đó: MD=CE
MD//AC
\(E\in\)AC
Do đó: MD//CE
Xét tứ giác DMCE có
DM//CE
DM=CE
Do đó: DMCE là hình bình hành
c: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\)
mà \(MD=\dfrac{AC}{2}\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
=>DHME là hình thang
Hình thang DHME có MD=HE
nên DHME là hình thang cân
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc với AB ( M thuộc AB ). Kẻ HN vuông góc AC ( N thuộc AC ). Gọi E là trung điểm AC, Kẻ AI vuông góc với BE tại I. Cm góc EIC= góc BIH
cho tam giác abc vuông tại a có ab=15cm,bc=25cm.kẻ đường cao ah(h thuộc bc).a) tính độ dài ac.b) kẻ hd vuông với ac(d thuộc ac) và he vuông với ab9e thuộc ab.chứng minh tam giác ade đồng dạng với tam giác abc.c) gọi m là trung điểm của bc.chứng minh am vuông góc với de
cho tam giác ABC vuông tại A, đường cao AH. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC. b) Cho AB=15cm, AC=20cm. Tính BC, AH. c) Từ H kẻ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: AB.AM=AC.AN
cho tam giác ABC vuông tại A, đường cao AH. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC. b) Cho AB=15cm, AC=20cm. Tính BC, AH. c) Từ H kẻ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: AB.AM=AC.AN
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
Cho tam giác ABC vuông tại A , đường cao AH . Gọi I , L lần lượt là trung điểm của AH và BH .
a) Chứng minh tam giác AHL đồng dạng với tam giác CHI
b) AL vuông CI
c)Từ H kẻ HE vuông góc AB ( E thuộc AB ) , HF vuông góc AC ( F thuộc AC ) . Tính S AEHF biết AH = 4cm , BC = 10 cm
Cho tam giác ABC vuông tại A có AH vuông góc BC ( H thuộc BC ) . Kẻ HD vuông góc AB ( D thuộc AB ) , HE vuông góc AC ( E thuộc AC ) . Trên tia đối của tia DH vad EH lấy các điểm M và N sao cho D là trung điểm của MH, E là trung điểm của NH . Chứng minh rằng :
a.Tam giác ADH = tam giác ADM , tam giác AEH = tam giác AEN
b.A là trung điểm của MN
c.BM // CN
mơn các bạn !