Cho tam giác ABC, lấy trung tuyến BM ( M thuộc AC). Trên tia đối tia MB lấy điểm D s cho MB=MD.
a.CM tam giác CBM = tam giác ABM
b.CM 2BM<AB+BC
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Cho biết AC = 8cm , BC = 10cm. Tính AB
b) Chứng minh AB = CD, AC vuông góc CD
c) Chứng minh AB + BC > 2BM
d) Chứng minh góc CBM < góc ABM
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
Cho tam giác ABC vuông tại A AB bé hơn AC Gọi M là trung điểm của AC Trên tia đối của tia MB lấy điểm D sao cho MD = MB 1) CMR: AB=CD 2) CMR: AB+BC>2BM 3) CMR: góc CBM< góc ABM
1: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
2: AB+BC>AC
mà AC>2BM
nên AB+BC>2BM
Bài 1 Cho tam giác ABC vuông tại A, biết AB = 6 cm; AC = 8cm. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. a) Chứng minh AB + BC > 2BM b) chứng minh ABM > CBM
a: 2BM=BD
Xét tứ giác ABCD có
M là trung điểm của BD
M là trung điểm của AC
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
Xét ΔBCD có BD<BC+CD
=>AB+BC>2BM
b: Ta có: \(\widehat{ABM}=\widehat{CDM}\)
mà \(\widehat{CDM}>\widehat{CBM}\)
nên \(\widehat{ABM}>\widehat{CBM}\)
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Cho biết AC = 8cm , BC = 10cm. Tính AB
b) Chứng minh AB = CD, AC vuông góc CD
c) Chứng minh AB + BC > 2BM
d) Chứng minh góc CBM < góc ABM
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
a) Xét ΔABC vuông tại A, có:
BC2=AB2+AC2 ( Định lý Py-Ta-Go)
(=) 102=AB2+82
(=) 100=AB2+64
(=) AB2= 36
(=) AB =6(cm) (do AB >0)
a) Áp dụng định lý Py ta go ta có :
BC2 =AB2 + AC2
=> AB2 = 100 - 64
=> AB = 6 cm
b) Xét ∆BAM và ∆DCM ta có :
BM = MD
AM = MC ( BM là trung tuyến)
BMA = CMD ( đối đỉnh)
=> ∆BAM = ∆DCM (c.g.c)
=> BAC = MCD = 90 độ
=> AC vuông góc với CD (dpcm)
=> AB = CD ( tg ứng )(dpcm)
b) Có BM là đường trung tuyến của ΔABC
=> AM =MC
Xét ΔBMA và ΔDMC, có :
BM=MD (gt)
BMA=CMD (2 góc đối đỉnh)
AM=CM (cmt)
Từ ba điều trên => ΔBAM=ΔDMC(c-g-c)
=>+) AB=CD(2 cạnh tương ứng) (đpcm)
+) góc A= góc MCD (2 góc tương ứng )
Mà góc A =90°=>MCD =90°
hay AC vuông góc với CD (đpcm)
Cho tam giác ABC vuông tại A ( AB<AC), BM là đường trung tuyến của tam giác ABC. trên tia đối cảu tia MB lấy ddiemr D sao cho MD=MB
a/ cho biết AB=6cm, BC=10 cm; tính AC
b/ chứng minh AB=CD, AC vuông góc CD
c/ chứng minh AB+BC>2BM
d/ chứng minh góc CBM< ABM
a) \(AC^2=BC^2-AB^2\)
\(AC^2=10^2-6^2\)
\(AC^2=100-36\)
\(AC^2=64\)
\(AC=8\)
mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu
b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có
BM = DM ( gt )
M là góc chung
AM = CM ( BN là đường trung tuyến )
Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )
\(\Rightarrow\) AB = CD ( 2 góc tương ứng )
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Bài này đề bài không rõ nha bạn !
Cho tam giác ABC vuông tại A , Gọi M là trung điểm của AC , Trên tia đối của tia MB lấy tia Md sao cho MB=MD.
a) chứng rằng tam giác ABM = tam giác ACm . từ đó => DC vuông góc với AC
b) chứng minh 2BM < AB+BC
Cho tam giác ABC vuông tại A có AB= 12cm; BC= 20cm. BM là đường trung tuyến. Trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Tính AC
b) CM: AB = CD; AC vuông góc với CD
c) CM: góc ABM > góc CBM
Cho tam giác ABC. Lấy M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a. Chứng minh tam giác ABM = tam giác CDM
b. Chứng minh tam giac AMD = tam giác CMB
c. Chứng minh tam giác ABC = tam giác CDA
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔABM=ΔCDM
b: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
c: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA