Cho parabol (P) : \(y=x^2\)và đường thẳng (d) : \(y=2mx+\left(2m+8\right)\). Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt A và B sao cho △OAB cân.
Cho parabol(P) y=x^2 và đường thẳng(d) y=2mx+2m+8. Chứng minh rằng (d) luôn cắt (P) ttaij hai điểm phân biệt A,B. Tìm m để tam giác OAB cân tại O.
Mọi người ơi giúp mình với mình cần gấp.
Cho đường thẳng (d): \(y=\left(m+2\right)x-2m\) và parabol (P): \(y=x^2\)
a, Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b, Gọi \(x_1\),\(x_2\) là hoành độ các giao điểm. Tìm m sao cho \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{5}{2}\)
Cho parabol (P) y = x2 và đường thẳng (d) y = mx – m + 1 (m là tham số)
a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt .
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho \(\left|x_A-x_B\right|< 3\) .
Biết xA và xB lần lượt là hoành độ giao điểm của hai điểm A, B.
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
Trong hệ tọa độ Oxy, cho parabol ( P ) : y=x2 và đường thẳng ( d ) : y = 2mx+x (m là tham số ). Tìm m để ( d ) cắt ( P ) tại 2 điểm phân biệt A,B sao cho tam giác OAB có diện tích bằng \(2\sqrt{6}\)
xem lại đầu bài đi bạn ơi, phương trình đường thẳng sai rồi ...
Trong hệ tọa độ Oxy, cho parabol ( P ) : y=x2 và đường thẳng ( d ) : y = 2mx+2 (m là tham số ). Tìm m để ( d ) cắt ( P ) tại 2 điểm phân biệt A,B sao cho tam giác OAB có diện tích bằng \(2\sqrt{6}\)
Xét phương trình hoành độ giao điểm
\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)
Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có
\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)
theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)
\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)
Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)
Cho parabol (P): y = x2 và đường thẳng (d): (2m - 1)x + 4. Tìm m để (d) cắt (P) tại 2 điểm phân biệt sao cho khoảng cách từ A và B đến trục Oy bằng nhau.
Phương trình hoành độ của (d) và (P) :
\(x^2=\left(2m-1\right)x+4\left(1\right)\)
\(\Leftrightarrow x^2-\left(2m-1\right)x-4=0\)
\(\Delta=\left(2m-1\right)^2+16>0\) ⇒ Phương trình có hai nghiệm phân biệt với mọi m.
- A và B cách Oy nên \(x_A,x_B\) trái dấu ⇒ \(x_Ax_B< 0\Leftrightarrow P=\dfrac{c}{a}=-4< 0\)
⇒ Để thỏa đề bài, \(x_A+x_B=0\).
Theo định lí Vi-ét
\(x_A+x_B=-\dfrac{b}{a}=2m-1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\)
Vậy : (d) cắt (P) tại 2 điểm phân biệt với khoảng cách từ A và B đến trục Oy bằng nhau khi \(m=\dfrac{1}{2}\)
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.
Trong hệ tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = 2mx + 2 ( với m là tham số ). Tìm m để (d) cắt (P) tại 2 điểm phân biệt A và B sao cho SOAB = \(2\sqrt{6}\)
Anh chị em help me :<.