Cho Parabol (P) \(y=x^{2}\) và đường thẳng (d) \(y=(2m+2)x-m-2m
\)
a) Tìm m để (P) cắt (d) tại 2 điểm phân biệt A,B
b) Gọi điểm A,B có hoành độ \(x_1,x_2\).Tìm m để \(2x_1+x_2=5\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=2x-2m+2 và parabol (P):y=x^2
a,Xác định các tọa độ giao điiểm của parabol (P)tại 2 điểm (d) khi m=-1/2
b,Tìm m để đường thẳng (d) vắt parabol (P) tại 2 điểm phân biệt \(A\left(x;y\right);B\left(x_2;y_2\right)\) sao cho \(y_1+y_2=4\left(x_1+x_2\right)\)
cho parabol (P): y=x^2 và đường thẳng (d): y =3x-2m +1 tìm giá trị của m để (P) và (d) cắt nhau tại hai điển phân biệt có hoành độ giao điểm là x1;x2 thỏa mãn \(|x_1|=2|x_2|\)
Cho đường thẳng (d):y= (m-1)x+m^2+1 và parabol (P): y=x^2a)
Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung.
b) Gọi x1, x2 là hoành độ giao điểm của (d) và (P). Tìm các giá trị của tham số m để
\(|x_1|+|x_2|=2\sqrt{2}\)
câu 2: cho parabol (P):\(y=x^2\) và đường thẳng(d): \(y=2x+m\)(m là tham số)
a)tìm tọa độ giao điểm của (d) và (P) khi m=3
b)tìm m để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn : \(x_1^2+x^2_2+x_1+x_2=2020\)
Cho (P): \(y=x^2\) và (d): \(y=mx-m+1\)
a. Tìm m để (d) cắt (P) tại 2 điểm phân biệt.
b. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) thỏa mãn
\(A=\dfrac{2x_1x_2}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}+2016\) đạt max, min
Làm câu (b) giúp em với ạ em cảm ơn nhiều
Cho hàm số y=\(-x^2\) có đồ thị là (P) và hàm số y=x-2 có đồ thị là (d).
Tìm m sao cho đường thẳng (d'): y=mx-4 (với m là tham số thực) và (P) cắt nhau tại hai điểm có hoành độ \(x_1\)\(x_2\) thỏa mãn: (\(x_1\)-\(x_2\))2 -\(x_1\)-\(x_2\)=18
Trong mặt phẳng tọa độ Oxy, cho parabol (P):y=`x^2` và `(d):y=2mx+2m+8`
a) Khi `m=-4`, tìm tọa độ giao điểm của (d) và (P)
b) CMR: (d) và (P) luôn cắt nhau ở 2 điểm phân biệt có hoành độ `x_1 ,x_2`. Tìm m để `x_1 +2x_2 =2`
Cho Parabol (P): \(y=x^2\)và đường thẳng (d): \(y=2\left(m+3\right)x-m^2-3\).
Tìm giá trị m để (d) cắt (P) tại hai điểm phân biệt có hoành độ là x1,x2 thỏa mãn hệ thức:
\(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)