CMR: gtri biểu thức không phụ thuộc vào x\(\sqrt{Sin^4x+4Cos^2x}+\sqrt{Cos^4x+4Sin^2x}\)
cho x là góc nhọn.Giá trị biểu thức \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4sin^2x}\) bằng?
\(0< =sin^2x< =1\)
=>\(-2< =sin^2x-2< =-1\)
=>\(sin^2x-2< 0\)
\(0< =cos^2x< =1\)
=>\(-2< =cos^2x-2< =-1\)
\(\Leftrightarrow cos^2x-2< 0\)
\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4\cdot sin^2x}\)
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\cdot\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^xx+4}+\sqrt{cos^4x-4\cdot cos^2x+4}\)
\(=\sqrt{\left(sin^2x-2\right)^2}+\sqrt{\left(cos^2x-2\right)^2}\)
\(=\left|sin^2x-2\right|+\left|cos^2x-2\right|\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=4-1=3\)
Rút gọn biểu thức \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4sin^2x}\) .
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)
\(=3\)
P= \(\sqrt{sin^4x+6cos^2x+3cos^4x}+\sqrt{cos^4+6sin^2x+3sin^4x}\)
Chứng minh các biểu thức sau ko phụ thuộc vào x
\(P=\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2cos^2x+1+2sin^2x+1\)
\(=2\left(sin^2x+cos^2x\right)+2=4\)
\(\frac{1-sin^2cos^2x}{cos^2x}-cos^2x\) \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4+4sin^2x}\)
P= \(\sqrt{sin^4x+6cos^2x+3cos^4x}+\sqrt{cos^4x+6sin^2x+3sin^4x}\)
chứng minh biểu thức ko phục thuộc vào x
chứng minh biểu thức ko phụ thuộc vào x
A= \(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
B= \(3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=\cos^4x-\sin^4x+2\sin^2x+\tan2x.\cot2x\)
b) \(B=\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
c) \(C=3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
d) \(D=2\left(\sin^4x+\cos^4x+\sin^2x.\cos^2x\right)-\left(\sin^8x+\cos^8x\right)\)
HELP ME PLEASE !!!!!!!!!!!!!!!!
rút gọn các biểu thức sau :
a)\(\dfrac{sin^4x+cosx^4-1}{sin^6x+cos^6x-1}\) b)(1+cotx)\(sin^3\)x+(1+tanx)\(cos^3x\)-sinxcosx
c)\(\sqrt[]{sin^4x+4cos^2x}\)+\(\sqrt{cos^4x+4sin^2x}\)
help me .... mai mk nộp r , nộp muộn là cô xẻo đấy ;(((( ... uhuhu
Cm biểu thức sau ko phụ thuộc vào a
\(\sqrt{sin^4a+cos^2a}+\sqrt{cos^4a+4sin^2a}\)
Đề bài không chính xác, biểu thức này vẫn phụ thuộc a
Đề bài đúng phải là: \(\sqrt{sin^4a+4cos^2a}+\sqrt{cos^4a+4sin^2a}\)