Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2019 lúc 7:31

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trên HC lấy D sao cho HD = HB. Tam giác ABD có đường cao AH là trung tuyến nên là tam giác cân, suy ra

∠(ADB) = ∠B . (1)

Ta có: DC = HC – HD = HC – HB = AB = AD ( vì tam giác ABD cân tại A)

Nên ΔADC cân tại D, do đó ∠(DAC) = ∠C (2)

Ta có; ∠ADB + ∠DAC = ∠BAC = 90º (3)

Và ∠B + ∠C = 90º vì tam giác ABC vuông tại A (4)

Từ (2); (3) và (4) suy ra ∠(DAB) = ∠B . (5)

Từ (1) và (5) suy ra ∠(ADB) = ∠B = ∠(DAB) , do đó ΔABD là tam giác đều.

Suy ra AB = BD = AD = DC. Vậy BC = 2AB.

Đoàn Thị Như Thảo
Xem chi tiết
Lê Anh Tú
21 tháng 2 2018 lúc 17:40

Do HC -HB = AB

Mà HC +HB =BC =>  nhân 2 vế ta có:

HC2 -HB2 =AB.BC (1).

Áp dụng định lí Pi-ta-go ta có:

HC2 =AC2-AH2

HB2 = AB2 -AH2 

Nên HC2 - HB2 =AC2 -AB2 = (BC2 -AB2 ) -AB2 = BC2 -2AB2 ,(2).

Từ (1 ) và (2 ) có: BC2 - 2AB2 =AB.BC

                          <=> BC2 -AB.BC - 2AB2 = 0

                           <=> (BC +AB) (BC -2AB ) = 0,

Do AB +BC >0 nên BC = 2AB.

©ⓢ丶κεη春╰‿╯
21 tháng 2 2018 lúc 17:43

HC -HB = AB, HC +HB =BC 
nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1). 
Áp dụng Pitago ta có HC ^2 =AC^2-AH^2, HB^2 = AB^2 -AH^2 nên HC^2 - HB^2 =AC^2 -AB^2 = (BC^2 -AB^2 ) -AB^2 = BC^2 -2AB^2 ,(2). Từ (1 ) và (2 ) có BC^2 - 2AB^2 =AB.BC 
<=> BC^2 -AB.BC - 2AB^2 = 0 
<=> (BC +AB) (BC -2AB ) = 0, 
do AB +BC >0 => BC - 2AB = 0 => BC = 2AB.

:3

KAl(SO4)2·12H2O
21 tháng 2 2018 lúc 17:52

HC -HB = AB, HC +HB =BC 
Nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1). 

Áp dụng Pitago ta có:

HC2 = AC2 - AH2; HB2 = AB2 nên:

HC2 - HB2 = AC2 - AB2 = (BC2 - AB2) - AB2 = BC2 - 2AB2

Từ (1) có BC2 - 2AB2 = AB . BC

<=> BC2 - AB . BC - 2AB2 = 0

<=> (BC + AB)(BC - 2AB ) = 0, 
Do AB +BC > 0 => BC - 2AB = 0 => BC = 2AB.

Phan Gia Trí
Xem chi tiết
ivisible man
8 tháng 1 2017 lúc 19:37

theo đề bài ta có BC=BH+HC mà HC-HB=AB nên ta có BC=HB+HC=2(HC-HB) nên ta có BC=2AB  

Huynh Truc Suong
Xem chi tiết
Trần Công Ninh
Xem chi tiết
Phạm Hải Băng
14 tháng 3 2017 lúc 22:48

Cách 1 :

HC -HB = AB, HC +HB =BC
nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1).
Áp dụng Pitago ta có HC ^2 =AC^2-AH^2, HB^2 = AB^2 -AH^2 nên HC^2 - HB^2 =AC^2 -AB^2 = (BC^2 -AB^2 ) -AB^2 = BC^2 -2AB^2 ,(2). Từ (1 ) và (2 ) có BC^2 - 2AB^2 =AB.BC
<=> BC^2 -AB.BC - 2AB^2 = 0
<=> (BC +AB) (BC -2AB ) = 0,
do AB +BC >0 => BC - 2AB = 0 => BC = 2AB

Cách 2:

Dựa vào đường xiên và hình chiếu :
lấy điểm D nằm giữa H,C sao cho HD = HB
==> AB = AD ( do có 2 hình chiếu bằnng nhau )
Đồng thời : AB = HC -- HB ( gt) = HC --HD = CD => AB = CD
nên : AD = CD
Kẻ đường cao DK xuống AC ==> AK = KC (do có 2 đxiên bằng nhau)
Nên K là trung điểm của AC và DK // AB ( do cùng vuông góc AC ) Từ đó D là trung điểm của BC ( đường trung bình )
==> BC = 2. BD = 2. CD , thay CD = AB ta được
----->BC = 2 .AB

Lưu Hiền
15 tháng 3 2017 lúc 8:32

mình sẽ chứng minh cho bạn tính chất này trứơc, vì rong bài sẽ có tính chất này

trong 1 tam giác vuông, có góc = 30 độ, thì cạnh góc vuông đối với góc ấy = 1/2 cạnh huyền, vậy cạnh còn lại = ?

giả sử tam giác abc vuông tại a và góc c = 30 dộ, thì ab = 1/2 bc

ta cần tính ac

áp dụng pytago vào tam giác này

\(=>bc^2-ab^2=ac^2\\ < =>4ab^2-ab^2=ac^2\\ < =>3ab^2=ac^2\\ < =>\sqrt{3}.ab=ac\)

thế nhé, giờ mình sẽ àm bài này, mang tinh chất của lớp 8 vì có đồng dạng

theo đề ta có

\(hc-hb=ab\\ < =>\left(hc-hb\right)^2=ab^2\\ < =>hc^2-2.hb.hc+hb^2=ab^2\left(1\right)\)

lại có hb . hc = ah2 (2)

ab2 = ah2 + hb2 (3)

từ (1); (2); (3)

\(=>ab^2=hc^2+hb^2-2.hb.hc=ah^2+hb^2\\ < =>ab^2=hc^2+hb^2-2ah^2=ah^2+hb^2\\ < =>ab^2=hc^2-3ah^2\\ < =>hc=\sqrt{3}.ah\)

có cái tính chất nãy mình chứng minh rồi

=> góc c = 30 độ

=> bc = 2 .ab

có mấy cái của lớp 8, nếu ko hiểu thì cứ hỏi mình nhé :)

chúc may mắn

Tô Phạm Minh Đức
18 tháng 4 2017 lúc 19:00

b

Bùi Quang Vinh
Xem chi tiết
KuDo Shinichi
Xem chi tiết
Blinkdayy_khuyenn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 10 2017 lúc 16:38

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có đường cao AH

⇒ AH2 = HC.HB (1)

Xét tam giác AHB vuông tại H có đường cao HK

⇒ A H 2  = AK.AB (2)

Từ (1) và (2) ⇒ AK.AB = HC.HB