\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
giải hệ \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\\\sqrt{2x+y}=b\end{matrix}\right.\) thì ta có:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\5\left(x-y\right)+5\sqrt{2x+y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a^2-8b^2+5b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}a=12\\b=-7\end{matrix}\right.\)(l)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Giải hệ pt : \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
Làm biếng gõ lại:
Câu hỏi của Đỗ Thị Ánh Nguyệt - Toán lớp 10 | Học trực tuyến
gải 2 hệ pt sau:
a) \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^3\times\left(1+2y\right)=1\\x\times\left(y^3-1\right)=2\end{matrix}\right.\)
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)
Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)
Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ
Xét x,y không đồng thời bằng 0, ta có
\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)
\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)
\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)
Tới đây thay vào phương trình (2) giải dễ dàng.
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
a:
ĐKXĐ: y+1>=0
=>y>=-1
\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4\left(x^2-2x\right)+2\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7\left(x^2-2x\right)=-7\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=-1\\3\cdot\left(-1\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x+1=0\\2\sqrt{y+1}=-3+7=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\sqrt{y+1}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\left(nhận\right)\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\cdot\sqrt{\left(2x-2\right)^2}+5\cdot\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}20\left|x-1\right|-12\left|y+2\right|=28\\20\left|x-1\right|+25\left|y+2\right|=65\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-37\left|y+2\right|=-37\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left|y+2\right|=1\\4\left|x-1\right|=13-5=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y+2\right|=1\\\left|x-1\right|=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1\in\left\{2;-2\right\}\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-1\\y< >-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=3-4=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=2-9=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=-1+2\cdot\dfrac{19}{11}=\dfrac{27}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x=\dfrac{2}{9}\end{matrix}\right.\)(nhận)
d:
ĐKXĐ: x<>1 và y<>-2
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}+\dfrac{3y+6-6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{x-1}-\dfrac{6}{y+2}=7-4=3\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{y+2}=-1\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=1\\\dfrac{2}{x-1}-5=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\\dfrac{2}{x-1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=\dfrac{2}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=\dfrac{11}{9}\end{matrix}\right.\left(nhận\right)\)