Cho tứ giác ABCD.Gọi M và N lần lượt là trung điểm của AB và CD. GọiG là trọng tâm của tam giácBCD. Chứng minh AG chia đôi Gn
Cho tứ giác ABCD có AD=BC. Gọi AC cắt BD tại I. K và L lần lượt là tâm nội tiếp của tam giác AID và tam giác BIC. M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng MN chia đôi KL ?
Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.
a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI)
b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: \(\frac{{GM}}{{GA}} = \frac{{GN}}{{GB}} = \frac{1}{3}\)
c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và \(\frac{{GP}}{{GC}} = \frac{{GQ}}{{GD}} = \frac{1}{3}\)
Tham khảo:
a) Ta có: M là trọng tâm của tam giác BCD
Nên M nằm trên trung tuyến BI (1)
Ta có: N là trọng tâm của tam giác ACD
Nên N nằm trên trung tuyến AI (2)
Từ (1) và (2) suy ra M và N thuộc mp (ABI)
b) Gọi H, K lần lượt là trung điểm của AG, BG
Ta có: HK // AB
AB // MN
Suy ra MN // HK
Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)
Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)
Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)
Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)
c) Gọi H, K lần lượt là trung điểm của BC, BD
Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Suy ra: QM // AD
Do đó, tam giác QGM đồng dạng với tam giác DGA
Nên D, G, Q thẳng hàng
Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)
Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)
Suy ra điều cần chứng minh.
Cho tứ giác ABCD. Các điểm M, N, P và Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh rằng hai tam giác ANP và CMQ có cùng trọng tâm ?
Gọi G lần lượt là trọng tâm tam giác ANP. Ta sẽ chứng minh G cũng là trọng tâm tam giác MQC.
Ta có: \(\overrightarrow{GA}+\overrightarrow{GN}+\overrightarrow{GB}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GC}+\overrightarrow{GM}+\overrightarrow{GQ}=\overrightarrow{0}\).
Thật vậy: \(\overrightarrow{GC}+\overrightarrow{GM}+\overrightarrow{GQ}=\overrightarrow{GA}+\overrightarrow{AC}+\overrightarrow{GN}+\overrightarrow{NM}+\overrightarrow{GP}+\overrightarrow{PQ}\)
\(=\left(\overrightarrow{GA}+\overrightarrow{GN}+\overrightarrow{GP}\right)+\left(\overrightarrow{AC}+\overrightarrow{NM}+\overrightarrow{PQ}\right)\)
\(=\overrightarrow{0}+\overrightarrow{AC}+\overrightarrow{NM}+\overrightarrow{PQ}\).
Do các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên PQ và NM lần lượt là các đường trung bình của tam giác DAC và BAC.
Vì vậy: \(\overrightarrow{NM}=\dfrac{1}{2}\overrightarrow{CA};\overrightarrow{PQ}=\dfrac{1}{2}\overrightarrow{CA}\).
Ta có: \(\overrightarrow{AC}+\overrightarrow{NM}+\overrightarrow{PQ}=\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CA}=\overrightarrow{0}\).
Ta chứng minh được: \(\overrightarrow{GC}+\overrightarrow{GM}+\overrightarrow{GQ}=\overrightarrow{0}\) nên G là trọng tâm tam giác CMQ.
Vậy hai tam giác ANP và CMQ có cùng trọng tâm.
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Cho hình bình hành ABCD.Gọi M, N lần lượt là trung điểm của BC, CD. Hai đường thẳng AM, AN cắt BD tại E, F. Chứng minh rằng:
A) E, F lần lượt là trọng tâm của các tam giác ABC và ACD
B)EB=EF=DF
(Gợi ý: Gọi O là giao điểm của 2 đường chéo)
a: Gọi giao của AC và BD là O
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔADC có
AN,DO là trung tuyến
AN cắt DO tại F
Do đó: F là trọng tâm cuả ΔADC
Xét ΔABC có
AM,BO là trung tuyến
AM cắt BO tại E
Do đó: E là trọng tâm của ΔABC
b: E là trọng tâm của ΔABC
=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
F là trọng tâm của ΔDAC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)
DF+FE+EB=DB
=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)
=>EB=EF=DF
Cho tứ giác ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD. Gọi G là trung điểm của đoạn thẳng MN, E là trọng tâm tam giác BCD. Chứng minh:
a) \(\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 4\overrightarrow {EG} \)
b) \(\overrightarrow {EA} = 4\overrightarrow {EG} \)
c) Điểm G thuộc đoạn thẳng AE và \(\overrightarrow {AG} = \frac{3}{4}\overrightarrow {AE} \)
a) Ta có: \(\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} \)\( = 4\overrightarrow {EG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)
Mà: \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)
\(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \) (do N là trung điểm của CD)
\( \Rightarrow \overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 4\overrightarrow {EG} + 2(\overrightarrow {GM} + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)
b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = \overrightarrow 0 \)
Từ ý a ta suy ra \(\overrightarrow {EA} = 4\overrightarrow {EG} \)
c) Ta có: \(\overrightarrow {EA} = 4\overrightarrow {EG} \Leftrightarrow \overrightarrow {EA} = 4.(\overrightarrow {EA} + \overrightarrow {AG} ) \Leftrightarrow - 3\overrightarrow {EA} = 4\overrightarrow {AG} \)
\( \Leftrightarrow 3\overrightarrow {AE} = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG} = \frac{3}{4}\overrightarrow {AE} \)
Suy ra A, G, E thẳng hàng và \(AG = \frac{3}{4}AE \) nên G thuộc đoạn AE.
Cho hình bình hành ABCD, gọi E và F lần lượt là trung điểm của BC và CD. Đường chéo BD cắt AE và AF lần lượt tại M và N. Chứng minh: a. M là trọng tâm của tam giác ABC, N là trọng tâm của tam giác ADC. b. MB=MN=ND
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
Mình sẽ giải cho bạn câu a trước ( tự vẽ hình nha)
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
nhưng hơi dài chút
Nối M với C ; N với C
Có \(OM=\dfrac{1}{3}OD\)
ON=\(\dfrac{1}{3}OB\)
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét Δ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét Δ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét Δ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
Hình chóp SABCD có đáy là một tứ giác lồi .Gọi M, N ,J lần lượt là trung điểm của SD, AB,CD .Gọi G, K lần lượt là trọng tâm tam giác SAB ,ABC .Chứng minh GK song song MJ
Cho hình chữ nhật ABCD.Gọi H là hình chiếu của điểm C xuống BD.Gọi M,N,I lần lượt là trung điểm của CH, DH,AB
a/ Chứng minh: M là trực tâm của tam giác CBN
b/ Gọi giao điểm của BM và CN là K.Gọi E là hình chiếu của điểm I xuống BK.Chứng minh tứ giác EINK là hình chữ nhật