cho f(x)=(x-1).(x+1) và g(x)=x^2+ax+c.Tìm a và c biết nghiệm của f(x) cũng là nghiệm của g(x)
Cho hai đa thức sau: F(x) =(x-1)(x+2) G(x) =x+ax^2+bx+2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
F(x)=0
=>x=-2 hoặc x=1
Để F(x) và G(x) có chung tập nghiệm thì:
-2+4a-2b+2=0 và 1+a+b+2=0
=>4a-2b=0 và a+b=-3
=>a=-1 và b=-2
Cho hai đa thức sau:
f(x)=(x^2+1)(x-1)
g(x)=x^3+ax^2+bx+2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
xét f(x)=0=> (x+1)(x-1)=0
=>__x+1=0=>x=-1
|__x-1=0=> x=1
vậy nghiêm của f(x) là ±1
xét f(x)=0 => (x+1)(x-1)=0
=> __x+1=0=> x=-1
|__x-1=0=> x=1
vậy nghiệm của f(x) là ±1
ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)
g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)
g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)
=>1+a-b=3+a+b
=>1-3-b-b=-a+a
=> -2-2b=0
=> -2b=2
=>b=2:(-2)=-1
thay b vào ta có:
\(g\left(1\right)=3+a+\left(-1\right)=0\)
=> 2+a=0
=> a=-2
Vậy a=-2 và b=-1
cho 2 đa thức:
f(x)= (x-1)(x+2)
g(x)= x^3+ax^2+bx+2
xác định a và b biết nghiệm của f(x) cũng là nghiệm của g(x)
Ngihem cua f(x) = (x-1)(x+2) = 0 => x=1 hoac x=-2
Vi nghiem cua f(x) cung la nghiem cua g(x) nen:
Tai x=1 thi: g(x)=13+a12+b1+2 = 0 => 1+a+b+2 = 0 => a+b=-3 => b = -3-a (1)
Tai x=-2 thi: g(x) = (-2)3 + a(-2)2 + b(-2) + 2 =0 => -8 + 4a + b + 2 = 0 => 4a+b = 6 => b=6-4a (2)
Tu (1) va (2) suy ra: -3-a = 6-4a => 3a = 9 => a=3
Thay a=3 vao (1) ta dc: b=-3-3 = -6
Vay: a=3 ; b=-6
Cho hai đa thức sau:
f(x)=(x+1)(x-1)
g(x)=x^3+ax^2+bx+2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Ta có: f(x)=(x+1).(x-1)=0
=> x+1=0=>x= -1 (chuyển vế đổi dấu)
x-1=0=>x=1
g(x)=x^3+ax^2+bc+2
g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0
<=> -1+a+b+2=0
=>a= -1-b
g(1)= 1^3+a.1^2+b.1+2=0
<=>1+a+b+2=0
=>3+a+b=0
=>b=-3
a=0
Vậy a=0 ; b= -3
Cho hai đa thức sau:f(x) = ( x-1)(x+2); g(x) = x^3 + ax^2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}1+a\cdot1^2+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho 2 đa thức sau: f(x) = ( x - 1 )( x + 2 ) và g(x) = x3 + ax2 + bx +2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Cho hai đa thức sau:
f(x)=(x-1)(x+2)
g(x)=x3 +ax2 +bx +2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của g(x)
Nghiệm của 2 đa thức như nhau nên ta có:
Nghiệm của đa thức f(x) là:
\(\left(x-1\right)\left(x+2\right)=0\)
<=> x=1;x=-2
Thay x=1 vào g(x):
1+a+b+2=0 => a+b=-3 => a=-b-3 (1)
Thay x=-2 vào g(x):
-8+4a-2b+2=0 =>4a-2b=6 (2)
Thay 1 vào 2, ta có:
4x(-b-3)-2b=6
<=>-4b-12-2b=6
<=>-6b=18
<=>b=-3
=> a=0