Cho tam giác ABC cân ở A có đường cao AH. Biết AB=5cm ,BC=6cm
a)Tính độ dài đoạn thẳng AH
Cho tam giác ABC cân ở A có đường cao AH. Biết AB=5cm,BC=6cm
a) Tính độ dài đoạn thẳng AH
b)Gọi G là trọng tâm của tam giác ABC ,Kẻ đường thẳng d đi qua C và vuông góc với BC . Tia BG cắt d tại E . Chứng minh : AG=CEvà góc AEB>góc ABE
Cho tam giác ABC cân ở A có đường cao AH. Biết AB=5cm,BC=6cm
a) Tính độ dài đoạn thẳng AH
b)Gọi G là trọng tâm của tam giác ABC ,Kẻ đường thẳng d đi qua C và vuông góc với BC . Tia BG cắt d tại E . Chứng minh : AG=CEvà góc AEB>góc ABE
Cho tam giác ABC cân tại A, đường cao AH. Biết AB =5cm, BC=6cm
a) Tính độ dài các đoạn thẳng BH, AH
b) Gọi M là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng?
xét tam giác abh và tam giác ach
có góc h1=góc h2
ab=ac
ah chung
=>tam giác abh=tam giác ach(ch.cgv)
=>bh=6cm:2=3cm
áp dụng định lý py-ta-go vào tam giác abh
ta có ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=4cm
Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm.
a) Tính độ dài các đoạn thẳng BH, AH.
b) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng.
c) Chứng minh: góc ABG = góc ACM.
Cho tam giác ABC cân tại A. đường cao AH. Biết AB=5cm, BC=6cm.
a. Tính độ dài các đoạn thẳng BH, AH
b. Gọi G là trọng tâm của tam giác ABC. CMR: 3 điểm A,G.H thẳng hàng
c. CMR: Tam giác ABG=Tam giác ACG
Bài 1 : Cho ABC cân tại A, đường cao AH. Biết AB=5cm, BC=6cm;
a)Tính độ dài các đoạn thẳng BH, AH;
b)Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A,G,H thẳng hàng;
c)Chứng minh:ABG=ACG;
a:Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=> \(BH=\dfrac{BC}{2}=3\left(cm\right)\)
nên AH=4(cm)
b: Ta có: AH là đường trung tuyến ứng với cạnh BC
mà G là trọng tâm của ΔABC
nên A,H,G thẳng hàng
c: XétΔABG và ΔACG có
AB=AC
AG chung
GB=GC
Do đó:ΔABG=ΔACG
Suy ra: \(\widehat{ABG}=\widehat{ACG}\)
Cho tam giác ABC cân tại A đường cao AH biết AB=5cm BC=6cm
A ) tính độ dài của các đoạn thẳng AH,BH
Gọi G là trọng tâm của tam giác ABC chứng minh rằng ba điểm A ,G ,H thẳng hàng
Chứng minh ABC = ACG
a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC
\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)
\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)
\(\Rightarrow\) AH = 4(cm)
b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH
\(\Rightarrow\) A,G,H thẳng hàng
Cho tam giác ABC cân tại A, đường cao Ah. Biết AB = 5cm, Bc = 6cm
a) Tính độ dài các đoạn thẳng BH, AH
b) Gọi G là trọng tâm tam giác ABC. Chứng minh rằng ba điểm A,G,H thẳng hàng
c) Chứng minh hai góc ABG và ACG bằng nhau
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
a)
Ta có tam giác ABC cân tại A ( gt )
Mà AH là đường cao
Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC
=> BH = CH = BC / 2 = 6 / 2 = 3 cm
Xét tam giác AHB vuông tại H
Ta có : AB2 = AH2 + BH2 ( Py-ta-go )
52 = AH2 + 32
=> AH2 = 16
=> AH = 4 cm
b)
Ta có G là trọng tâm của tam giác ABC ( gt )
=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC
mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )
=> A,G,H thẳng hàng
c)
gọi CG cắt AB tại E ; BG cắt BC tại F
vì G là trọng tâm => CE ; BF là đường trung tuyến
=> E là trung điềm AB ; F là trung điểm AC
Ta có EA = BA / 2 = 5 / 2 = 2,5 cm
AF = AC / 2 = 5 / 2 = 2,5 cm
Xét tam giác AEC và tam giác AFB
ta có : AE = AF = 2,5
góc BAC chung
AC = AB = 5
Nên 2 tam giác = nhau ( c-g-c )
=> góc ABG = góc ACG ( tương ứng )
a)tam giác ABC cân tại A có AH là đường cao
=>AH là đường trung tuyến=>BH=CH=BC/2=6/2=3
tam giác ACH vuông tại H
=>AC^2=AH^2+HC^2(theo định lí Py-ta-go)
=>5^2=AH^2+3^2
=>25=AH^2+9
=>AH^2=25-9
=>AH^2=16
=>AH=4
Vậy BH=3cm,AH=4cm
b)Vì G là trọng tâm của tam giác ABC
=>AG là đường trung tuyến ứng với cạnh BC
Mà AH cũng là đường trung tuyến ứng với cạnh BC(theo a)
=>A,G,H thẳng hàng
c)Xét tam giác vuông BAH và tam giác vuông CAH có:
AB=AC(gt)
AH chung
=> tam giác vuông BAH=tam giác vuông CAH (cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=> góc BAG= góc CAG
Xét tam giác BAG và tam giác CAG có:
AG chung
AB=AC(gt)
góc BAG và góc CAG(cmt)
=>tam giác BAG=tam giác CAG(c.g.c)
=>góc ABG và góc ACG(2 góc tương ứng)
mong mn cho ý kiến với ạ!
chúc mn học tốt:<
Cho tam giác ABC cân tại A, đường cao AH. Biết AB=5cm, BC=6cm
a) Tính độ dài các đoạn thẳng BH, AH?
b) Gọi G là trọng tâm của tam giác ABC. C/minh 3 điểm A, G, H thẳng hàng.
c) C/minh góc ABG = góc ACG
Cho tam giác ABC cân tại A , đường cao AH. Biết AB=5cm , BC=6cm . a, Tính độ dài các đoạn thẳng BH ,AH/b, Gọi G là trọng tâm của tam giác ABC . Chứng minh rằng ba điểm A ,G ,H thẳng hàng
xét tam giác ABM và tam giác ACM có
AB=AC(gt)
AH chung
AHB=AHC(=90 độ)
=> tam giác ABH= tam giác ACH(ch-cgv)
=> BH=CH (hai cạnh tương ứng)
=> H là trung điểm của BC=> BH=CH=6/2=3cm
Áp dụng định lý pytago vào tam giác vuông ABH
=> AB^2=AH^2+BH^2
=>AH^2=AB^2-BC^2
=>AH^2=5^2-3^2
=>AH^2=25-9
=>AH^2=16
=>AH=4(AH lớn hơn 0)
b) Vì H là trung điểm của BC=> AH là trung tuyến
mà G là trọng tâm của tam giác ABC
=> G thuộc 3 đường trung tuyến của tam giác ABC
=> A,G,H thẳng hàng