Tìm số tự nhiên n biết: \(n+S\left(n\right)=2015\)
Biết S(n) là tổng của tất cả các chữ số của số nguyên dương n
biết S(n) là tổng các chữ số của n. tìm tất cả các số tự nhiên biết n + S(n) = 2014
biết S(n) là tổng các chữ số của n. Tìm tất cả các số tự nhiên n biết:
n + S(n)=2014
Tìm tất cả các số tự nhiên n, biết rằng \(n+S\left(n\right)=2014\), trong đó \(S\left(n\right)\) là tổng các chứ số của n.
rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)
nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)
mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.
vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.
Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2
với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)
Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)
Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)
vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)
Tìm tất cả các số tự nhiên n biết rằng: n+S(n) = 2014, trong đó S(n) là tổng các chữ số của n
Tìm tất cả các số tự nhiên n biết rằng: n+S(n) = 2014, trong đó S(n) là tổng các chữ số của n
Tìm tất cả các số tự nhiên n,biết rằng: n+S(n)=2016,trong đó S(n) là tổng các chữ số của n.
Tìm tất cả các số tự nhiên n biết rằng: n + S(n) = 2014, trong đó S(n) là tổng các chữ số của n
Tìm tất cả các số tự nhiên n biết rằng: n + S(n) = 2014, trong đó S(n) là tổng các chữ số của n
Tìm tất cả các số tự nhiên n, biết rằng: n+S(n)=2014, trong đó S(n) là tổng các chữ số của n.