Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ồ Hố
Xem chi tiết
Mai Kim Chi
7 tháng 3 2019 lúc 20:18

TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)

        =\(\frac{x+xy+1}{xy+x+1}\)

        = 1

Bạch Dạ Y
Xem chi tiết
KhangCVn
11 tháng 9 2021 lúc 22:01

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

Khách vãng lai đã xóa
Tô Mì
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 5 2022 lúc 17:47

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

hacker nỏ
22 tháng 5 2022 lúc 17:59

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)\(A=\dfrac{z}{1+xz+z}+\dfrac{xz}{z+1+xz}+\dfrac{1}{xz+z+1}\)(vì xyz=1)

\(A=\dfrac{z+xz+1}{xz+z+1}\)\(A=1\)

Xong rồi nè bn ơi hihi

 

Trần Tuấn Hoàng
22 tháng 5 2022 lúc 19:51

\(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(=\dfrac{1}{\dfrac{1}{z}+\dfrac{1}{yz}+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1}{y}+z+1}\)

\(=\dfrac{1}{\dfrac{y+1+yz}{yz}}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1+zy+y}{y}}\)

\(=\dfrac{yz}{y+1+yz}+\dfrac{1}{yz+y+1}+\dfrac{y}{1+zy+y}=\dfrac{y+yz+1}{y+yz+1}=1\)

Phạm Tuấn Kiệt
Xem chi tiết
Ma Cà Rồng
11 tháng 4 2016 lúc 14:39

Vì xyz = 1 nên x = y = z = 1

=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Tạ Uyên
Xem chi tiết
黃旭熙.
31 tháng 8 2021 lúc 15:58

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

Tạ Uyên
1 tháng 9 2021 lúc 15:50

cam ơn ah. kết quả bằng 3 ah.

Lê Hoài Duyên
Xem chi tiết
ST
12 tháng 1 2018 lúc 20:39

\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)

\(=\frac{xy+x+1}{xy+x+1}=1\)

Pain Thiên Đạo
12 tháng 1 2018 lúc 18:28

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)

\(\frac{x+xy+1}{xy+x+1}=1\)

Edogawa Conan
Xem chi tiết
Mới vô
9 tháng 8 2017 lúc 15:07

Câu hỏi của jgfhjudfhuvfghdf |Học trực tuyến

Nguyễn Huy Hoàng
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 11:26

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

Khôi Bùi
19 tháng 5 2021 lúc 11:30

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

Hương bên đèo
Xem chi tiết
Sách Giáo Khoa
24 tháng 3 2020 lúc 12:06

Ta có: \(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)

\(A=\frac{xz}{1+xz+z}+\frac{xyz}{z+1+xz}+\frac{z}{xz+z+1}\)

\(A=\frac{xyz+xz+1}{xyz+xz+1}\)

\(A=1\)

Vậy \(A=1\)

Khách vãng lai đã xóa
khó quá
19 tháng 2 2021 lúc 20:35

oho