chứng minh đa thức sau vô nghiệm : 9x^2+6x+8
Chứng minh đa thức sau vô nghiệm:
\(9x^2+6x+10\)
Ta có
\(9x^2+6x+10\)
\(=9x^2+3x+3x+1+9\)
\(=3x\left(3x+1\right)+3x+1+9\)
\(=\left(3x+1\right)\left(3x+1\right)+9\)
\(=\left(3x+1\right)^2+9\ge9.Với\forall x\in Q\)
Vậy đa thức trên vô nghiệm
\(f\left(x\right)=9x^2+6x+10=\left(3x+1\right)^2+9>0\)
9x2+6x+10
(a=9, b'=3, c=10)
Ta có: \(\Delta\)=b'2-ac
hay \(\Delta\)=32-9.10
<=> \(\Delta\)=-81
Vì \(\Delta\)=-81<0 nên phương trình vô nghiệm.
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
a) 9x+2x-x=0
x(9+2-1)=0
10x=0
=)x=0
b)25-9x=0
9x=25
=)x=25/9
2)
x2>=0
x4>=0
=)x2+x4>=0
=)x2+x4+1>=1
=)da thức vô nghiệm
chứng minh đa thức sau vô nghiệm: 3x2-6x+15
ta có :\(^{3x^2-6x\ge0}\)
15 >0
=}\(^{3x^2-6x+15\ge15}\)
=}đa thức \(3x^2-6x+15\)vô nghiệm
k giùm mình nhé
=(3x2-3x)-(3x+3)+12
=3x(x-1)-3(x-1)+12
=(x-1)(3x-3)+12
=(x-1).3.(x-1)+12
=3.(x-1)2+12
Ta có: 3.(x-1)2\(\ge\)0,\(\forall x\)12>0
=>3(x-1)2+12>0
Vậy đa thức trên vô nghiệm
cm 2 đa thức sau vô nghiệm: 9x2+6x+2 and 25x2-30x+10
chứng minh đa thức vô nghiệm B(x) = \(x^4-6x^2+15\)
$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm
Chứng minh đa thức \(x^2+6x+11\) vô nghiệm
\(x^2+6x+11\)
\(=\left(x^2+6x+9\right)+2\)
\(=\left(x+3\right)^2+2\)\(>0\)
Vậy pt vô nghiệm
\(x^2+6x+11=\left(x^2+2.x.3+3^2\right)+2=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\)đa thức \(x^2+6x+11\) vô nghiệm
đpcm
chứng minh rằng : đa thức \(x^5-3x^4+6x^3+6x^2+9x-6\)không có nghiệm nguyên
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Chứng minh rằng đa thức vô nghiệm : A=\(-x^2+6x-19\)
A=-x2+6x-19
A=-(x2-6x+9)-10
A=-(x-3)2-10
Vì \(\left(x-3\right)^2\ge0\)
Nên \(-\left(x-3\right)^2\le0\)
=>\(A\le-10\)
=>A vô nghiệm
\(A=-x^2+6x-19\)
\(A=-\left(x^2-6x+9+10\right)\)
\(A=-\left(x+3\right)^2-19\)
Vì \(-\left(x+3\right)^2\le\)Với mọi x
\(\Rightarrow A\le-19\)với mọi x
\(\Rightarrow A\)Vô nghiệm
A = -x2 + 6x - 19 = -( x2 - 6x + 9 ) - 10 = -( x - 3 )2 - 10 ≤ -10 < 0 ∀ x
hay A vô nghiệm ( đpcm )