Chứng minh bất đẳng thức: \(4ab\left(a+b\right)\left(a+1\right)\left(a+b+1\right)+b^2\ge0\)
Cho các số dương a,b,c. Chứng minh bất đẳng thức: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Chứng minh bất đẳng thức: \(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\left(ĐK:a\ge1\right)\)
\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
Bài 1: Cho a,b,c là các số dương. Chứng minh các bất đẳng thức:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
( dùng cô -si )
bài 2( dùng định nghĩa )
1) Cho abc=1 và \(a^3>36\)Chứng minh rằng \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)
2) Chứng minh rằng a) \(x^4+y^4+z^4+1\ge2x\left(xy^2-x+z+1\right)\)
b) Với mọi số thực a,b,c ta có: \(a^2+5b^2-4ab+2a-6b+3>0\)
c) \(a^2+2b^2-2ab+2a-4b+2\ge0\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)
Có đpcm
Ồ bài 2 a mới sửa đề ak:)
Dạng 3.Chứng minh đẳng thức
Bài 1: CM
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
b)\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Bài 2 :CM
\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}=\sqrt{\sqrt{5}+1}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
Chứng minh các bất đẳng thức:
a) \(y^8-y^7+y^2+1>0\)
b) \(m^2+n^2+p^2+q^2\ge m\left(n+p+q+1\right)\)
Cho \(a,b,c\ge0\) . Tìm hệ số k tốt nhất thoả mãn đẳng thức sau:
\(\frac{a^3}{2a+b+c}+\frac{b^3}{2b+c+a}+\frac{c^2}{2c+b+a}+\frac{k\left(a+b+c\right)abc}{ab+bc+ca}\ge\left(\frac{1}{4}+\frac{k}{3}\right)\left(a^2+b^2+c^2\right)\)
Thật ra bài này là một câu trắc nghiệm thôi và mình muốn có lời giải rõ ràng. Có 4 đáp án các bạn chọn và giải rõ ràng ra nhé.
Hệ số k tốt nhất là:
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{5}\)
\(k_{max}=\frac{1}{4}\). Cách làm là dùng Maple. Maple 17 mất gần 1 phút để giải bài này bằng chương trình do mình tổng hợp.
Vô thống kê hỏi đáp xem ảnh nha.
chứng minh rằng ta có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) nếu có một trong các đẳng thức sau
a) \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\) b) \(\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
\(b\text{) }\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\Leftrightarrow\frac{a+2c}{a-c}=\frac{b+2d}{b-d}\)
-> Làm tương tự í trên
1. Tính diện tích toàn phần của hình lăng trụ đứng có đáy là tam giác vuông cân, cạnh góc vuông là a, chiều cao 2a.
2.Chứng minh bất đẳng thức sau:
\(\left(2a+2b\right)\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\ge2\) ( a, b > 0 )
1.
Cạnh huyền là: \(\sqrt{2a^2}\)
=> Chu vi đáy = \(2a+\sqrt{2a^2}\)
=> Sxq = \(2a\left(2a+\sqrt{2a^2}\right)\)
=> Stp = \(a^2+2a\left(2a+\sqrt{2a^2}\right)\)(đvdt)
p/s: Hình như là k rút gọn đc
2. Đề sai k ạ ? Tui lm k ra = 2, nếu mà đề đúng thì tui 0 biet lam
gọi m là giá trị nhỏ nhất trong 3 số : \(\left(x-y\right)^2,\left(y-z\right)^2,\left(z-x\right)^2\). chứng minh bất đẳng thức: \(M\le\frac{x^2+y^2+z^2}{2}\)
giải chi tiết giúp mk nha cảm ơn nhiều ^^