Tim x,y,z\(\in\)N sao cho 0<x\(\le y\le z\)va xy+yz+zx=xyz
Mk can gap
tim x,y thuoc z sao cho (x-7).(y+3)<0
Ta có :
\(\left(x-7\right)\left(y+3\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-7< 0\\y+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\y>-3\end{cases}}}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-7>0\\y+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\y< -3\end{cases}}}\)
Vậy hoặc \(x< 7\) và \(y>-3\) hoặc \(x>7\) và \(y< -3\)
Chúc bạn học tốt ~
tim x;y thuoc Z sao cho
x-2y+y=0
x-2y+y=0
<=>x-y=0
x=y
Mà mình thấy hình như sai đề thì phải
x-2y+y=0
=>x-y=0
=>x=y
vậy với mọi x,y thuộc Z,x=y thì đều thỏa mãn ycđb
Anh Khánh sai rồi: Nếu rút gọn biểu thức thì nó sẽ ra được x-3y=0
=> x=3y
Anh đúng được một chỗ là cái đề bị thiếu
tim x,y,z thuoc N sao cho 1/x+1/y+1/z=1/2
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
1.Tim tat ca cac cap so nguyên sao cho x^3 -x^2y+3x-2y-5=0
2. Cho0<x,y,z =<1 . CMR : x/(1+y+xz) + y/(1+z+xy) +z/(1+x+yz) =< 3/(x+y+z)
3) Tim n thuoc Z sao cho :
a)3n+1chia het cho (n-2)
b)4n-3 chia het cho (2n+3)
4)tim x,y thuoc Z sao cho :
a)xy-3x-y-6=7
b)2xy+10y + x =5
ai nhanh minh tick cho
tim x, y, z thuoc Z sao cho /x-y/+/y-z/+/x-z/=2019
tim tất cả các cặp số hữu tỉ x, y có dạng x=1/b, y=c/3, b, c thuộc Z, b khác 0, sao cho|x| + |y| =1
cho x,y,z la cac so thuc thoa x+y+z=0, x+1>0, y+1>0, z+1>0. tim GTLN cua P=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}\)
cho x,y,z,t la cac so duong. tim GTNN cua A=\(\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)