Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anh yêu chị
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 22:02

a: \(\widehat{ABC}=90^0-30^0=60^0\)

b: Xét tứ giác ADKC có 

E là trung điểm của AK

E là trung điểm của DC

Do đó: ADKC là hình bình hành

Suy ra: AD//CK

 

Ngochip Vũ
Xem chi tiết
Huy Vũ Danh
Xem chi tiết
UcHihA SaSUkE
4 tháng 5 2016 lúc 11:59

cho tam giác ABC vuông tại A,có ABcho tam giác ABC vuông tại A,có AB<AC.Gọi M và n lần lượt là hình chiếu của D trên AB và AC,BN cắt CM tại K,AK cắt Dm tại I,BN cắt DM tại E ,CM cắt DN tại F.a) chứng minh EF song song BC b) C/m K là trực tâm tam giác AEFc) tính góc BID

ĐS: chiu thúa

Phùng Thị Phương Thảo
Xem chi tiết
Đinh Tiến Đạt
Xem chi tiết
ngọc ánh 2k8
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 21:47

a: Sửa đề: vẽ dây AD vuông góc với đường kính của (O) tại I

ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>BC là đường kính của (O)

mà AD vuông góc với đường kính của (O)

nên AD\(\perp\)BC tại I

=>B,I,C thẳng hàng

b: BC=2*OB=8cm

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)

=>\(\dfrac{AB}{8}=sin40\)

=>\(AB\simeq5,14\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{8^2-5.14^2}\simeq6,13\left(cm\right)\)

c: ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

ΔABC vuông tại A có AI là đường cao

nên \(AI^2=IB\cdot IC\)

=>\(IB\cdot IC=IA\cdot ID\)

Phươngg Thùyy
Xem chi tiết
Đoàn Đức Hà
22 tháng 6 2021 lúc 22:48

Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).

a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).

Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\)\(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)

suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).

b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).

Suy ra \(EB\perp MC\).

c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)

suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn) 

suy ra \(AB=EC\)

mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))

nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)

suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)

mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)

mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).

d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong) 

suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))

Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).

suy ra tam giác \(AIE\)đều (vì \(IE=IA\)

suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).

Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).

Khách vãng lai đã xóa
Huỳnh Như
Xem chi tiết
nguyen thi ngoc anh
Xem chi tiết
Ngô Thúy Hạnh
Xem chi tiết