a: \(\widehat{ABC}=90^0-30^0=60^0\)
b: Xét tứ giác ADKC có
E là trung điểm của AK
E là trung điểm của DC
Do đó: ADKC là hình bình hành
Suy ra: AD//CK
a: \(\widehat{ABC}=90^0-30^0=60^0\)
b: Xét tứ giác ADKC có
E là trung điểm của AK
E là trung điểm của DC
Do đó: ADKC là hình bình hành
Suy ra: AD//CK
Tam giác abc cân tại a có góc a=80 độ . Trên cạnh bc lấy điểm d,e sao cho bd=ce<1/2 bc
A. Tính số đo của góc b. Góc c của tam giác abc
B.c/m tam giác ade cân
C kẻ dh vuông góc ab, ek vuông góc với ac( h€ab,k€ac).c/m ah=ak
D. Gọi m là trung điểm của bc.c/m 3 đường thẳng am, dh, ek cắt nhau tại 1 điểm
Cho tam giác ABC vuông tại A . Trên cạnh BC lấy điểm D sao cho AB=AD. Gọi I là trung điểm AD.Kéo dài BI cắt AD tại E
a, C/m tam giác ABE=tam giácDBE
b,C/m BE là tia p/g của ABC;ED vuông góc vs BC
c,Trên tia đối của tia AB lấy điểm K sao cho AK=DC . C/m tam giác AEK=tam giác DEC.C/m 2 điểm D,E,K thẳng hàng
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC cân tại A. Trên cạnh Ab lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Qua D và E kẻ các đường thẳng vuông góc với BC lần lượt tại M và N
a) CMR: BM=CN
b)Gọi I là giao điểm của BC và DE. CHứng minh DE=2DI
c)Kẻ AH vuông góc với BC tại H. Đường thẳng đi qua I và vuông góc với DE cắt AH tại K. Tính số đo góc DBK
Bài 4 (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác abc vuông tại a có góc c= 30,kẻ ah vg góc với bc tại h , trên cạnh ac lấy điểm d sao cho ad=ah.Gọi i là trung điểm của cạnh hd.
a,tam giác ahi=tam giác adi.
b,Tínsố đo góc hac và c/m tam giác adh là tam giác đều .
c, tia ai cắt cạnh hc tại điểm k .c/m tam giác ahk=tam giác adk và ab//kd.
d,trên tia đối của tia ha lấy điểm e sao cho he=ah.c/m 3 điểm d,k,e thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Bài 4 (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm. Trên tia đối của tia AB lấy điểm D sao cho AB = AD
a. Chứng minh tam giác ADC = tam giác ABC
b. Tính độ dài cạnh DC
c. Từ A kẻ AK vuông góc với BC tại K, kẻ AH vuông góc với DC tại H. Chứng minh AK = AH
d. Kéo dài KA cắt tia CD tại M, kéo dài HA cắt tia CB tại N. Gọi I là trung điểm của MN. Chứng minh C, A, I thằng hàng.