giải bất phương trình 4x^2-4x+1>25
Bài 1: Giải các bất phương trình và phương trình sau :
a) 2(3-4x) = 10-(2x – 5)
Giải các bất phương trình và phương trình sau :
a) 3(2-4x) = 11-(3x – 1)
Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)
Giải bất phương trình: \(\dfrac{x^2-4x+3}{\sqrt{25-x^2}}>0\)
\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)
Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$
$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)
$\Leftrightarrow (x-1)(x-3)>0$
$\Leftrightarrow x>3$ hoặc $x<1$
Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$
giải bất phương trình : 9x^2+căn (4x-5)>căn (x) +25
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
ĐK: \(x\ge\frac{5}{4}\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
<=> \(9x^2-25+\sqrt{4x-5}-\sqrt{x}>0\)
<=> \(\left(3x-5\right)\left(3x+5\right)+\frac{3x-5}{\sqrt{4x-5}+\sqrt{x}}>0\)
<=> \(\left(3x-5\right)\left(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}\right)>0\)
<=> 3x - 5 > 0 vì \(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}>0\) với mọi \(x\ge\frac{5}{4}\)
<=> x > 5/3 thỏa mãn đk
giải bất phương trình : 4x2-4x+1>9
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
giải bất phương trình
1)2x+3<0
2)3x-8>4x-12
3)3x-2>4x+3
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Giải bất phương trình: 2x(6x - 1) > (3x - 2)(4x + 3)
2x(6x – 1) > (3x – 2)(4x + 3)
⇔ 12x2 – 2x > 12x2 – 8x + 9x – 6
⇔ 12x2 – 2x – 12x2 + 8x – 9x > -6 (Chuyển vế, đổi dấu)
⇔ -3x > -6
⇔ x < 2 (Chia cả hai vế cho -3 < 0, BPT đổi chiều)
Vậy bất phương trình có nghiệm x < 2.
Giải các bất phương trình mũ sau: 2 x - 2 > 4 x + 1
2 x - 2 > 2 2 x + 1
⇔ |x−2| > 2|x+1|
⇔ x 2 − 4x + 4 > 4( x 2 + 2x + 1)
⇔ 3 x 2 + 12x < 0
⇔ −4 < x < 0