Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Quang Nhân
Xem chi tiết
Nguyễn Thị Minh Nhã
22 tháng 5 2022 lúc 19:42

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:25

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

hoàng minh chính
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 23:44

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

Bảo Nguyễn Ngọc
Xem chi tiết
ZetNo1
14 tháng 8 2017 lúc 8:52

a^2 hay a.2 thế

Bảo Nguyễn Ngọc
14 tháng 8 2017 lúc 9:00

a^2 bn ạ!!
 

Vũ Thu Hiền
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 22:04

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

Akai Haruma
30 tháng 1 2021 lúc 22:04

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

Nguyễn Thế Quang
Xem chi tiết
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 19:49

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Lương Khánh Nhật Minh
Xem chi tiết