Chứng minh rằng :
B = 1/21 + 1/31 + 1/43 +...+ 1/211 <1
chứng minh rằng:1/21+1/31+1/43+.....+1/211<1/5
mình cần rất gấp giúp mik với ak
\(\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+...+\frac{1}{211}< \frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}=A\)
Mà \(A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(A=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{15-14}{14.15}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}=\frac{1}{4}-\frac{1}{15}=\frac{3}{20}\)
Mà \(\frac{1}{5}=\frac{4}{20}>A=\frac{3}{20}\)
=> Biểu thức đề bài cho là đúng
Chứng minh rằng:
1/3 + 1/7 + 1/13 + 1/21 + 1/31 + 1/43 +....+1/91 <1
Ta thấy:
1/3 < 1/2 = 1 - 1/2
1/7 = 1/(3x2 + 1) < 1/(3x2) = 1/2 - 1/3
1/13 = 1/(3x4 + 1) < 1/(3x4) = 1/3 - 1/4
1/21 = 1/(4x5 + 1) < 1/(4x5) = 1/4 - 1/5
..........................................
..........................................
1/73 = 1/(8x9 + 1) < 1/(8x9) = 1/8 - 1/9
..........................................
Cộng tất cả lại :
1/3 + 1/7 + 1/13 + 1/21 +...+ 1/73 + ... < (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ....+ (1/8 - 1/9) + ...< 1
Đặt \(A=\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+.....+\frac{1}{91}\)
Ta có: \(A< \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{9.10}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< 1-\frac{1}{10}\)
\(\Rightarrow A< \frac{9}{10}\)
Vì \(A< \frac{9}{10}< 1\Rightarrow A< 1\RightarrowĐPCM\)
câu này làm nnhuw thế nào 7/12<1/41+1/42+1/43+...+1/9+1/80<1
Chứng minh rằng \(\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+\frac{1}{57}+\frac{1}{73}+\frac{1}{91}< 1\)
Bài làm
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 1: Chứng minh rằng
1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2: So sánh với 1
1/4+1/9+1/16+1/25+....+1/10000
Bài 1: CMR:1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2:So sánh với 1: 1/4+1/9+1/16 + 1/25 +...+1/10000
Giải
Ta đặt M =1/4+1/9+1/16 + 1/25 +...+1/10000
Hay M = 1/2X2+ 1/3X3+1/4X4+1/5X5 +...+1/100X100
M< 1/1x2+ 1/2x3+1/3x4+1/4x5+...+1/99x100
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5)+...+(1/99-1/100)
M< 1-1/100 < 99/100 (1)
Vì 99/100 < 1 (2)
Từ(1) và (2) ta có : 1/4+1/9+1/16 + 1/25 +...+1/10000 <1
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
C=1+3+32+33+...+311 . Chứng minh rằng C ⋮ 40
D=1+4+42+43+...+458+459 . Chứng minh rằng D ⋮ 21
\(C=1+3+3^2+3^3+\cdot\cdot\cdot+3^{11}\)
\(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+3^8\cdot40\)
\(=40\cdot\left(1+3^4+3^8\right)\)
Vì \(40\cdot\left(1+3^4+3^8\right)⋮40\)
nên \(C⋮40\)
#\(Toru\)
\(C=1+3+3^2+3^3+...+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(\Rightarrow C=40+3^4.40+3^8.40\)
\(\Rightarrow C=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow dpcm\)
Chứng minh rằng : \(\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{21}+\frac{1}{31}+\frac{4}{43}+\frac{1}{57}+\frac{1}{73}+\frac{1}{91}<1\)
( lời giải chi tiết nha , mình đang cần gấp )
Giải:
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Chứng minh rằng 21.(a+1/b)+3.(b+1/a)>31(với a,b>0)
Chứng Minh Rằng
a) 1/21+1/31+1/41+...=1/1001 < 1
b) 9/101+9/111+9/121+...+9/100001 <9!