Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dbrby
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2020 lúc 20:42

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

\(2VT\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^2c^2}+\frac{2}{1+c^2a^2}\)

\(\Rightarrow VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\)

\(\Rightarrow2VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^4}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^4}\frac{1}{1+c^2a^2}+\frac{1}{1+a^4}\)

\(\Rightarrow2VT\ge\frac{2}{1+ab^3}+\frac{2}{1+bc^3}+\frac{2}{1+ca^3}\)

\(\Rightarrow VT\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Đoàn Thu Thuỷ
Xem chi tiết
Kiệt Nguyễn
2 tháng 2 2021 lúc 20:14

Trước hết, ta chứng minh bổ đề sau: Nếu \(a,b\ge1\)thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(\frac{1}{1+a}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{1+b}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\sqrt{b}\left(1+a\right)\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{a}\left(1+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)*đúng do \(\sqrt{ab}\ge1\)(vì a,b\(\ge1\))*

Áp dụng bổ đề trên, ta được: \(\left(\frac{1}{1+a^4}+\frac{1}{1+b^4}\right)+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

Tương tự: \(\left(\frac{1}{1+b^4}+\frac{1}{1+c^4}\right)+\frac{2}{1+c^4}\ge\frac{4}{1+bc^3}\)\(\left(\frac{1}{1+c^4}+\frac{1}{1+a^4}\right)+\frac{2}{1+a^4}\ge\frac{4}{1+ca^3}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)(đpcm)

Khách vãng lai đã xóa
Phan Hải Đăng
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 7:03

Ta có \(a+b+b+b\ge4\sqrt[4]{abbb}\)(theo BĐT Cosi)

\(\Leftrightarrow a+3b\ge\sqrt[4]{ab^3}\)

\(\Leftrightarrow\frac{a+3b}{4}\ge4\sqrt[4]{ab^3}\)

Mà \(a,b,c\ge1\Rightarrow a+3b\ge4\Rightarrow\frac{a+3b}{4}\ge1\)

\(\Leftrightarrow1+\sqrt[4]{ab^3}\ge1+a\)

\(\Rightarrow\frac{1}{1+\sqrt[4]{ab^3}}\le\frac{1}{1+a}\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+\sqrt[4]{bc^3}}=\frac{1}{1+b}\left(2\right)\\\frac{1}{1+\sqrt[4]{ca^3}}=\frac{1}{1+c}\left(3\right)\end{cases}}\)

(1) (2) (3) => \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3+1}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)(đpcm)

Khách vãng lai đã xóa
khoimzx
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:50

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

Khách vãng lai đã xóa
Easylove
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2020 lúc 14:51

BĐT sai khi \(a;b;c\) thuộc \(\left(0;1\right)\)\(a;b;c\) không bằng nhau

Kiên NT
Xem chi tiết
Ngọc Duy Anh Vũ
Xem chi tiết
Angela jolie
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
16 tháng 9 2019 lúc 22:27

@Trần Thanh Phương; @Lê Thị Thục Hiền @No choice teen

Nguyễn Việt Lâm
16 tháng 9 2019 lúc 23:21

\(3=a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(ab+bc+ca\right)^2}{3}\)

\(\Rightarrow ab+bc+ca\le3\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z\le3\)

Ta cần chứng minh \(\frac{1}{4-x}+\frac{1}{4-y}+\frac{1}{4-z}\le1\)

Dễ dàng chứng minh \(\frac{1}{4-x}\le\frac{x+2}{9}\) với \(0< x< 3\)

Thật vậy, BĐT \(\Leftrightarrow9\le\left(x+2\right)\left(4-x\right)\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có \(\frac{1}{4-y}\le\frac{y+2}{9}\) ; \(\frac{1}{4-z}\le\frac{z+2}{9}\)

Cộng vế với vế: \(VT\le\frac{x+y+z+6}{9}\le\frac{3+6}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)