@Trần Thanh Phương; @Lê Thị Thục Hiền @No choice teen
\(3=a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(ab+bc+ca\right)^2}{3}\)
\(\Rightarrow ab+bc+ca\le3\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z\le3\)
Ta cần chứng minh \(\frac{1}{4-x}+\frac{1}{4-y}+\frac{1}{4-z}\le1\)
Dễ dàng chứng minh \(\frac{1}{4-x}\le\frac{x+2}{9}\) với \(0< x< 3\)
Thật vậy, BĐT \(\Leftrightarrow9\le\left(x+2\right)\left(4-x\right)\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)
Tương tự ta có \(\frac{1}{4-y}\le\frac{y+2}{9}\) ; \(\frac{1}{4-z}\le\frac{z+2}{9}\)
Cộng vế với vế: \(VT\le\frac{x+y+z+6}{9}\le\frac{3+6}{9}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)