BĐT sai khi \(a;b;c\) thuộc \(\left(0;1\right)\) và \(a;b;c\) không bằng nhau
BĐT sai khi \(a;b;c\) thuộc \(\left(0;1\right)\) và \(a;b;c\) không bằng nhau
2. Cho a, b > 0. CM: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng CM các bđt sau:
a)Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4.\) CM:\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
b)\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b=c}{2}\left(a,b,c>0\right)\)
Cho a,b,c >0 và ab+bc+ca \(\le\)3
CMR:
\(\frac{1}{a^3+b^3+4}+\frac{1}{b^3+c^3+4}+\frac{1}{a^3+c^3+4}\le\frac{1}{2}\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)với a,b,c>0 và ab+bc+ca=3
Cô mình nói quy đồng và đưa về cái khác rồi cm nó luôn đúng.
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}\ge\frac{3\sqrt{3}}{2}\)
Bài 1. Chứng minh bất đẳng thức sau
1,\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\),với a,b,c là 3 cạnh của tam giác, p là nửa chu vi.
2,\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\),với \(a\ge1,b\ge1\)
3,Tìm giá trị nhỏ nhất.
a,\(A=x+\frac{1}{x-1}\) ,với x > 1.
b, \(B=\frac{4}{x}+\frac{1}{4y}\),với x,y > 0 và \(x+y=\frac{5}{4}\)
4, \(C=a+b+\frac{1}{a}+\frac{1}{b}\)với a,b > 0 và \(a+b\le1\)
5,\(D=a^3+b^3+c^3\) với a,b,c > 0 và \(ab+bc+ca=3\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Cho \(a,b\ge0\) . CM BĐT \(a^3+b^3\ge a^2b+b^2a=ab\left(a+b\right)\left(1\right)\)
Áp dụng chứng minh các BĐT sau :
a) \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) với \(a,b,c>0\)
b) \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\) với \(a,b,c>0\) và \(abc=1\)
c) \(\frac{1}{a+b+c}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\) với \(a,b,c>0\) và \(abc=1\)
Cho 3 số dương a,b,c tm: a+b+c+ab+ca+bc=6abc
CMR: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{3}\)
@Lightning Farron