giải pt sau: 2x2 + x - 10 = 0
Giải pt sau:
|2x-5|+|2x2-7x+5|=0
\(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Giải các pt sau
a) 3x2 + 4x = 0
b) -2x2 - 8 = 0
c) 2x2 -7x2 + 5 = 0
d) x^2 - 8x - 48 = 0
cho mik hỏi rằng là 3x2 + 4x = 0 hay 3x2 + 4x = 0
ông ơi mấy bài này bấm máy tính là ra mà ông
a) \(3x^2+4x=0\Leftrightarrow\left(3x+4\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\end{matrix}\right.\)
➤\(x\in\left\{0;-\dfrac{4}{3}\right\}\)
b) \(-2x^2-8=0\Leftrightarrow-2x^2+\left(-2\right)\cdot4=0\)
\(\Leftrightarrow\left(x^2+4\right)\cdot\left(-2\right)=0\\ \Leftrightarrow x^2+4=0\\\Rightarrow x^2=\varnothing\Leftrightarrow x=\varnothing \)
vì với mọi x, ta luôn đúng với: \(x^2\ge0\Leftrightarrow x^2+4\ge4>0\)
➤\(x=\varnothing\)
c)\(2x^2-7x^2+5=0\)
+) \(a+b+c=2+\left(-7\right)+5=7-7=0\)
Do đó, phương trình có 2 nghiệm sau:
\(x=1\) và \(x=\dfrac{5}{2}=2,5\)
➤\(x\in\left\{1;2,5\right\}\)
d) \(x^2-8x-48=0\)
+)\(\Delta=\left(-8\right)^2-4\cdot1\cdot\left(-48\right)=64+192=266>0\)
\(\Leftrightarrow\sqrt{\Delta}=\sqrt{266}\)
➢Do đó, ta có: \(\left[{}\begin{matrix}x=\dfrac{\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{\sqrt{266}+8}{4}\\x=\dfrac{-\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{8-\sqrt{266}}{4}\end{matrix}\right.\)
➤ \(x\in\left\{\dfrac{8+\sqrt{266}}{4};\dfrac{8-\sqrt{266}}{4}\right\}\)
giải pt sau:
a. (2x2 + 3)(-x + 7) = 0
b. (x2 - 2)(x+5)(-3x+8) = 0
a: =>7-x=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
giải pt sau:
a. (2x2 + 3)(-x + 7) = 0
b. (x2 - 2)(x+5)(-3x+8) = 0
a: =>-x+7=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
undefined cho pt :(m-1)x^2+2x+1=0 -
giải pt với m =-1 -tìm m để pt có 2 nghiệm phân biệt x1=2x2
Giải giúp mình với ạ !
Cho PT : 2x2 + (2m-1)x +m-1=0.Không giải PT , tìm m để PT có hai nghiệm . . tìm hệ thức liên hệ giữa các nghiệm ko phụ thộc vào m
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)
Cộng vế với vế:
\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)
Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m
tim m de 2 pt sau co nghiem chung
2x2 + mx – 1= 0 , mx2 – x + 2 = 0
Giải pt bằng delta và tìm nghiệm:
a) 2x2 - 5x + 1 = 0
b) 4x2 + 4x + 1 =0
c) 5x2 - x + 2 =0
a) \(2x^2-5x+1=0\)
\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)
___________________________________________________
b) \(4x^2+4x+1=0\)
\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)
Vậy phương trình có nghiệm kép:
___________________________________________________
c) \(5x^2-x+2=0\)
\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)
Vậy phương trình vô nghiệm.
\(a,2x^2-5x+1=0\)
\(\Delta=-b^2-4ac\)
\(\Delta=25-8\)
\(\Delta=17\)
Vậy phương trình có `2` nghiệm phân biệt :
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{4} \)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{4}\)
\(b,4x^2+4x+1=0\)
\(\Delta=b^2-4ac\)
\(\Delta=16-16=0\)
Vậy phương trình có nghiệm kép :
\(x=\dfrac{-b}{2a}=-\dfrac{4}{8}=-\dfrac{1}{2}\)
\(c,5x^2-x+2=0\)
\(\Delta=1-40\)
\(\Delta=-39\)
Vậy phương trình vô nghiệm .
Giải pt chứa ẩn ở mẫu sau.
A, 3x2 +7x -10/ x=0
b, 4x-17/2x2+1=0
c, 2x-5/x+5 =0
d, 5/3x+2=2x-1
Help
a: ĐKXĐ: x<>0
\(\Leftrightarrow3x^2+10x-3x-10=0\)
=>(3x+10)(x-1)=0
=>x=-10/3 hoặc x=1
b: ĐKXĐ: \(x\in R\)
\(\Leftrightarrow4x-17=0\)
hay x=17/4
c: ĐKXĐ: \(x\ne-5\)
=>2x-5=0
hay x=5/2
d: ĐKXĐ: x<>-2/3
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
=>(6x+7)(x-1)=0
=>x=1 hoặc x=-7/6
Cho PT: 2x² - ( 2m +1 )x + m² - 9m + 39 = 0 a) Giải PT khi m = 9 b) Tìm m để PT có 2 nghiệm x1,x2 mà x1 = 2x2 mọi người cho mik công thức câu b) thôi nha mà giải cũng đc
a: Khi m=9 thì phương trình trở thành:
\(2x^2-19x+39=0\)
\(\Leftrightarrow2x^2-6x-13x+39=0\)
=>(x-3)(2x-13)=0
=>x=13/2 hoặc x=3
b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)
\(=4m^2+4m+1-8m^2+72m-312\)
\(=-4m^2+76m-311\)
\(=-\left(4m^2-76m+361-50\right)\)
\(=-\left(2m-19\right)^2+50\)
Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)
\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)
\(\Leftrightarrow\left(2m-19\right)^2< =50\)
hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)
Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong