Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Phước Thịnh
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 22:44

\(ĐK:x\le1\)

Đặt \(\sqrt{1-x}=t\ge0\Leftrightarrow x=1-t^2\)

\(PT\Leftrightarrow6t-\left(1-t^2\right)=5\sqrt{1-t}\\ \Leftrightarrow t^2-\left(1-t\right)+5t-5\sqrt{1-t}=0\\ \Leftrightarrow\left(t-\sqrt{1-t}\right)\left(t+\sqrt{1-t}+5\right)=0\\ \Leftrightarrow t-\sqrt{1-t}=0\left(t+\sqrt{1-t}+5>0\right)\\ \Leftrightarrow t=\sqrt{1-t}\\ \Leftrightarrow t^2=1-t\\ \Leftrightarrow t=\dfrac{\sqrt{5}-1}{2}\Leftrightarrow1-x=\dfrac{3-\sqrt{5}}{2}\\ \Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\left(tm\right)\)

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

BTS FOREVER
Xem chi tiết
Trang Nguyễn
Xem chi tiết
hưng phúc
16 tháng 10 2021 lúc 21:40

a. \(\sqrt[3]{1-2x}+3=0\left(ĐK:x\le\dfrac{1}{2}\right)\)

<=> \(\sqrt[3]{1-2x}=-3\)

<=> \(1-2x=\left(-3\right)^3\)

<=> \(1-2x=-27\)

<=> \(-2x=-28\)

<=> \(x=14\left(TM\right)\)

Hoàng Vũ Lê
Xem chi tiết
alibaba nguyễn
24 tháng 7 2017 lúc 9:09

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3+\sqrt{x-1}\right)^2}=5\)

\(\Leftrightarrow|2-\sqrt{x-1}|+3+\sqrt{x-1}=5\)

\(\Leftrightarrow\orbr{\begin{cases}2-\sqrt{x-1}+\sqrt{x-1}=2\\\sqrt{x-1}-2+\sqrt{x-1}=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}1\le x\le5\\x=5\end{cases}}\)

\(\Rightarrow1\le x\le5\)

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Lei
Xem chi tiết

\(PT\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-5x^2-2\sqrt{5}x-1\)

\(\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-\left(\sqrt{5}x+1\right)^2\)

\(\Rightarrow x+\sqrt{6x^2+6}\le0\)

Khách vãng lai đã xóa
Lei
13 tháng 6 2020 lúc 5:34

rồi sao nữa

Khách vãng lai đã xóa
Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:43

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:43

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Gia Khoa
Xem chi tiết
Đăng Khoa
28 tháng 11 2023 lúc 21:05

Đặt:\(\sqrt{x+9}=v;\sqrt{x+6}=u\)

Ta có: \(v+5u=5+vu\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\Leftrightarrow\left(5-v\right)\left(u-1\right)\)

\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(N\right)\end{matrix}\right.ĐKXĐ:x>=-6\)

\(S=\left\{16,-5\right\}\)

Câu trên mình quên -5>-6

Đăng Khoa
28 tháng 11 2023 lúc 21:07

Đặt: \(\sqrt{x+9}=v;\sqrt{x+6}=u\)

Ta có: \(v+5u=5+vu\)

\(\Leftrightarrow v+5u-5-uv=0\)

\(\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\)

\(\Leftrightarrow\left(5-v\right)\left(u-1\right)\)

\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(L\right)\end{matrix}\right.\)          ĐKXĐ:\(x>=-6\)

\(S=\left\{16\right\}\)

 

Trần Vũ Minh Huy
28 tháng 11 2023 lúc 21:17

\(\sqrt{x+9}+5\sqrt{x+\text{6}}=5+\sqrt{\left(x+9\right)\left(x+\text{6}\right)}\Leftrightarrow\sqrt{x+9}+5=5+\sqrt{x+9}\Leftrightarrow\sqrt{x+9}-\sqrt{x+9}=0\Leftrightarrow x+9-x-9=0\Leftrightarrow0=0\)

Vậy x vô số nghiệm