Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thanh Hoàng
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Xem chi tiết
tth_new
11 tháng 2 2020 lúc 19:21

Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)

\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)

Khách vãng lai đã xóa

a,b,c??? chỗ nào vậy bé ?? :)))

Khách vãng lai đã xóa
tth_new
11 tháng 2 2020 lúc 19:27

Cho các số thực dương a,b,c thỏa mãn x+y+z=1 .Chứng minh

Chỗ e in đậm.

Khách vãng lai đã xóa
doraemon
Xem chi tiết
alibaba nguyễn
28 tháng 12 2021 lúc 19:57

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)

\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)

Ta có:

\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)

Khách vãng lai đã xóa
doraemon
Xem chi tiết
Thùy Hoàng
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:46

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:51

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

Nguyễn Nhật Minh
6 tháng 8 2016 lúc 0:08

\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2

\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))

=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0

N.T.M.D
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 16:17

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

Thanh Quân
13 tháng 6 2021 lúc 17:34

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

Thu Hien Tran
Xem chi tiết
Nguyễn Thành Trương
17 tháng 7 2019 lúc 19:13

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

Akai Haruma
17 tháng 7 2019 lúc 17:43

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

Akai Haruma
17 tháng 7 2019 lúc 17:46

Bài 2:

Vì $xyz=1$ nên:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{z+x+y}{xyz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}\)

Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq 2(1)\)

\(\frac{2}{3}(x+y+z)\geq \frac{2}{3}.3\sqrt[3]{xyz}=\frac{2}{3}.3=2(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\geq 2+2=4\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

vũ thị ánh dương
Xem chi tiết
Hoàng Minh Hiếu
22 tháng 1 2019 lúc 23:38

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)

\(\Rightarrow yz+zx+xy=0\)

Vì:

\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)

Nên.....(tự kết luận nha)

vũ thị ánh dương
23 tháng 1 2019 lúc 13:13

giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :

 vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)

                                           

alibaba nguyễn
23 tháng 1 2019 lúc 13:55

-Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+yz+zx=0\)

Đặt \(xy=a,yz=b,zx=c\) thì bài toán thành

Cho \(a+b+c=0\)chứng minh \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)

Ta có:

\(\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

\(=c^2\left(a+b\right)^2+c^2\left(a-b\right)^2-\left(a^2-b^2\right)^2-c^4\)

\(=c^2\left[\left(a+b\right)^2-c^2\right]+\left(a-b\right)^2\left[c^2-\left(a+b\right)^2\right]\)

\(=c^2\left(a+b+c\right)\left(a+b-c\right)+\left(a-b\right)^2\left(a+b+c\right)\left(c-a-b\right)\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]=0\)

Vậy \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)