cho x,y,z là các số thực dương thỏa x+y+z=4
chứng minh \(\frac{1}{2xy+xz+yz}+\frac{1}{xy+2yz+zx}+\frac{1}{xy+yz+2zx}\le\frac{1}{xyz}\)
Cho các số thực không âm thỏa mãn x+y+z=3 và xy+yz+zx\(\ne\)0
Chứng minh rằng \(\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\le\frac{25}{3\sqrt[3]{4xy+yz+zx}}\)
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z dương thỏa mãn x + y + z = xy + yz + zx. Chứng minh:
\(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=4
Chứng minh rằng \(\frac{1}{xy}+\frac{1}{yz}\ge1\)
Cho x,y,z >0 và x+y+z=1. Chứng minh rằng \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge\frac{49}{16}\)
Cho x,y,z là các số thực thỏa mãn (x-y)(x-z)=1 ; y khác z .
Chứng minh \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)≥4
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)