Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khởi My

Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng

\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Khôi Bùi
27 tháng 4 2019 lúc 17:20

Theo GT : \(xy+yz+xz=3xyz\Rightarrow\frac{xy+yz+xz}{xyz}=3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

\(\frac{x^3}{x^2+z}=\frac{x\left(x^2+z\right)}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)

Tương tự , ta có : \(\frac{y^3}{y^2+x}\ge y-\frac{\sqrt{x}}{2}\) ; \(\frac{z^3}{z^2+y}\ge z-\frac{\sqrt{y}}{2}\)

\(\Rightarrow\frac{x^3}{x^2+z}+\frac{y^3}{y^2+z}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\)

Vì x ; y ; z dương , áp dụng BĐT Cô - si , ta có :

\(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};z+1\ge2\sqrt{z}\)

\(\Rightarrow x+y+z+3\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

=> \(\frac{x+y+z+3}{2}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\) => BĐT được c/m

Tiếp tục AD BĐT Cô - si , ta có :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow x+y+z\ge\frac{9}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{9}{3}=3\) => BĐT được c/m

Có : \(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{2}\ge\frac{3.3-3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy ...


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
fghj
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Kakarot Songoku
Xem chi tiết
Hàn Thiên Băng
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết