Ta có: \(\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}\ge\frac{16}{\left(x+y+z\right)^2}=1\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=z\\y=x+z\end{matrix}\right.\Leftrightarrow x=z=1;y=2\)
Với mọi x,y,z>0.Áp dụng bđt svac-xơ có:
\(\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{y\left(x+z\right)}=\frac{4}{y\left(4-y\right)}\)(do x+y+z=4)
Có \(\left(y-2\right)^2\ge0\) với mọi y
<=> \(y^2-4y+4\ge0\)
<=> \(4y-y^2-4\le0\)
<=> \(y\left(4-y\right)\le4\)
<=> \(\frac{4}{y\left(4-y\right)}\ge1\)
=>\(\frac{1}{xy}+\frac{1}{yz}\ge1\)
Dấu "=" xảy ra <=> x=z=1 ,y=2