Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vua Phá Lưới

Cho 3 số thực x,y,z dương thỏa mãn xy + yz + zx + 2xyz = 1. Chứng minh

\(\frac{x^2y}{x+1}+\frac{y^2z}{y+1}+\frac{z^2x}{z+1}\ge2xyz\)

Nguyễn Việt Lâm
23 tháng 10 2020 lúc 21:45

BĐT tương đương:

\(\frac{1}{z\left(1+\frac{1}{x}\right)}+\frac{1}{x\left(1+\frac{1}{y}\right)}+\frac{1}{y\left(1+\frac{1}{z}\right)}\ge2\)

Từ giả thiết:

\(xy+yz+zx+2xyz=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2=\frac{1}{xyz}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c+2=abc\)

\(\Rightarrow a+b+c+2\le\frac{1}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\left(a+b+c\right)^3-27\left(a+b+c\right)-54\ge0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(a+b+c+3\right)^2\ge0\)

\(\Leftrightarrow a+b+c\ge6\)

BĐT trở thành: \(\frac{c}{1+a}+\frac{a}{1+b}+\frac{b}{1+c}\ge2\)

Thật vậy, ta có:

\(VT=\frac{a^2}{a+ab}+\frac{b^2}{b+bc}+\frac{c^2}{c+ca}\ge\frac{\left(a+b+c\right)^2}{a+b+c+ab+bc+ca}\ge\frac{3\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(VT\ge\frac{3\left(a+b+c\right)}{3+a+b+c}=\frac{2\left(a+b+c\right)+a+b+c}{a+b+c+3}\ge\frac{2\left(a+b+c\right)+6}{a+b+c+3}=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thu Ngà
Xem chi tiết
người bị ghét :((
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
fghj
Xem chi tiết
Khởi My
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
dia fic
Xem chi tiết