BĐT tương đương:
\(\frac{1}{z\left(1+\frac{1}{x}\right)}+\frac{1}{x\left(1+\frac{1}{y}\right)}+\frac{1}{y\left(1+\frac{1}{z}\right)}\ge2\)
Từ giả thiết:
\(xy+yz+zx+2xyz=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2=\frac{1}{xyz}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c+2=abc\)
\(\Rightarrow a+b+c+2\le\frac{1}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\left(a+b+c\right)^3-27\left(a+b+c\right)-54\ge0\)
\(\Leftrightarrow\left(a+b+c-6\right)\left(a+b+c+3\right)^2\ge0\)
\(\Leftrightarrow a+b+c\ge6\)
BĐT trở thành: \(\frac{c}{1+a}+\frac{a}{1+b}+\frac{b}{1+c}\ge2\)
Thật vậy, ta có:
\(VT=\frac{a^2}{a+ab}+\frac{b^2}{b+bc}+\frac{c^2}{c+ca}\ge\frac{\left(a+b+c\right)^2}{a+b+c+ab+bc+ca}\ge\frac{3\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(VT\ge\frac{3\left(a+b+c\right)}{3+a+b+c}=\frac{2\left(a+b+c\right)+a+b+c}{a+b+c+3}\ge\frac{2\left(a+b+c\right)+6}{a+b+c+3}=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)