Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hồ ly
Xem chi tiết
Phạm Khang
20 tháng 1 2023 lúc 23:41

Ta có:a^2+b^2+c^2+d^2
=(a^2/4+b^2)+(a^2/4+c^2)+(a^2/4+d^2)+(a^2/4+e^2)

Lại có:(a/2-b)^2≥0<=>a^2/4-ab+b^2≥0<=>a^2/4+b^2≥ab

Tương tự:a^2/4+c^2≥ac

               :a^2/4+d^2≥ad

               :a^2/4+e^2

=>(a^2/4+b^2)+(a^2/4+c^2)+(a^2/4+d^2)+(a^2/4+e^2)
≥ab+ac+ad+ae

<=>a^2+b^2+c^2+d^2≥a(b+c+d+e) (đpcm)

                  

Bùi Đạt Khôi
Xem chi tiết
Vũ Tuấn Hải
8 tháng 9 2017 lúc 22:03

toi bạn rùi cmr là chết mày rùi

Le Nhat Phuong
8 tháng 9 2017 lúc 22:06

a² + b² + c² + d² + e² ≥ a(b + c + d + e) 

Ta có: a² + b² + c² + d² + e² 

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) 

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab 

Tương tự ta có: 

. a²/4 + c² ≥ ac 
. a²/4 + d² ≥ ad 
. a²/4 + e² ≥ ae 

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae 

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m 

Dấu " = " xảy ra <=> a/2 = b = c = d = e 

P/s: Hơi hơi dễ nhỉ

Bùi Đạt Khôi
10 tháng 9 2017 lúc 14:37

vu tuan hai la sao

Bùi Đạt Khôi
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
FL.Han_
6 tháng 10 2020 lúc 15:27

Xét hiệu:

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)

\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)

Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:

\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 10 2020 lúc 15:31

ô kê :))

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế ta được

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> b = c = d = e = a/2

Khách vãng lai đã xóa
Nguyen Hoang Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2021 lúc 21:19

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)

\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)

 

conan doyle
Xem chi tiết
Toàn lũ ngu
10 tháng 11 2017 lúc 20:42

ngu dễ mà không biết làm mày là đồ con lợn

Nguyen khanh huyen
Xem chi tiết
OOOĐỒ DỐI TRÁ OOO
25 tháng 10 2016 lúc 16:31

Giả sử 2 số trong 5 số không bằng nhau. VD a<b (1)

Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại

Vì vậy do ab=bcab=bc. Mà a<b⟹c<ba<b⟹c<b

Ta có bc=cdbc=cd mà c<b⟹c<dc<b⟹c<d 

Ta có cd=decd=de mà c<d⟹e<dc<d⟹e<d 

Ta có de=eade=ea mà e<d⟹a>ee<d⟹a>e 

Ta có ea=abea=ab mà a>e⟹a>ba>e⟹a>b (2)

Từ (1) và (2) ~~> điều giả sử sai

Vậy a=b=c=d=ea=b=c=d=e (đpcm)

tích nha pạn

Minhchau Trần
Xem chi tiết
Akai Haruma
12 tháng 9 2021 lúc 4:00

Lời giải:

$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$

$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$

$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$

Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực

Do đó để tổng của chúng bằng $0$ thì:

$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$

$\Leftrightarrow 2b=2c=2d=2e=a$

$\Rightarrow b=c=d=e$

Minhchau Trần
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 9 2021 lúc 18:02

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)

CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)

\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)