Với a>b, b>c, c>d d>e, CM \(a^2+b^2>c+d+e\)
cm với mọi a, b, c ta có a^2+b^2+c^2+d^2+e^2>=a*(b+c+d+e)
Ta có:a^2+b^2+c^2+d^2
=(a^2/4+b^2)+(a^2/4+c^2)+(a^2/4+d^2)+(a^2/4+e^2)
Lại có:(a/2-b)^2≥0<=>a^2/4-ab+b^2≥0<=>a^2/4+b^2≥ab
Tương tự:a^2/4+c^2≥ac
:a^2/4+d^2≥ad
:a^2/4+e^2
=>(a^2/4+b^2)+(a^2/4+c^2)+(a^2/4+d^2)+(a^2/4+e^2)
≥ab+ac+ad+ae
<=>a^2+b^2+c^2+d^2≥a(b+c+d+e) (đpcm)
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m
Dấu " = " xảy ra <=> a/2 = b = c = d = e
P/s: Hơi hơi dễ nhỉ
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ
Cho a,b,c,d,e là các số thực. CM:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
So i dì:))
Xét hiệu:
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)
\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)
Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:
\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)
ô kê :))
a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae
Nhân 4 vào từng vế ta được
<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0
<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0
<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> b = c = d = e = a/2
cho \(\dfrac{a}{b}\) =\(\dfrac{c}{d}\) cm rằng
a) \(\dfrac{a}{a-b}\) =\(\dfrac{c}{c-d}\) b)\(\dfrac{a}{b}\) =\(\dfrac{a+c}{b+d}\) c) \(\dfrac{a}{3a+d}\) =\(\dfrac{c}{3c+d}\) d)\(\dfrac{a.c}{b.d}\) =\(\dfrac{a^2+c^2}{b^2+c^2}\) e)\(\dfrac{a.b}{c.d}\) =\(\dfrac{a^2-b^2}{c^2-d^2}\) f)\(\dfrac{a.b}{c.d}\) =\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mn giúp mk vs ạ! thanks
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
cho 5 STN: a, b, c, d, e thỏa mãn: a^b = b^c = c^d = d^e = e^a. CM 5 số a, b, c, d, e bằng nhau
ngu dễ mà không biết làm mày là đồ con lợn
Cho 5 số tự nhiên a,b,c,d,e,biet a^b=b^c=c^d=d^e=e^a
cm a=b=c=d=e
Giả sử 2 số trong 5 số không bằng nhau. VD a<b (1)
Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy do ab=bcab=bc. Mà a<b⟹c<ba<b⟹c<b
Ta có bc=cdbc=cd mà c<b⟹c<dc<b⟹c<d
Ta có cd=decd=de mà c<d⟹e<dc<d⟹e<d
Ta có de=eade=ea mà e<d⟹a>ee<d⟹a>e
Ta có ea=abea=ab mà a>e⟹a>ba>e⟹a>b (2)
Từ (1) và (2) ~~> điều giả sử sai
Vậy a=b=c=d=ea=b=c=d=e (đpcm)
tích nha pạn
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
Lời giải:
$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$
$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$
$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$
Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực
Do đó để tổng của chúng bằng $0$ thì:
$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$
$\Leftrightarrow 2b=2c=2d=2e=a$
$\Rightarrow b=c=d=e$
Cho a,b,c,d,e thỏa mãn a^2+b^2+c^2+d^2+e^2=a(b+c+d+e). CMR b=c=d=e
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)
CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)
\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)