Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Núi non tình yêu thuần k...
Xem chi tiết
Mirai
21 tháng 3 2021 lúc 16:01

undefined

Nguyễn Minh Huy
Xem chi tiết
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:28

1.

\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)

Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):

\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)

b.

Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)

B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)

M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)

M thuộc CM nên tọa độ thỏa mãn:

\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM

Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)

Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:37

2.

AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp

Phương trình tham số:

\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)

Phương trình tổng quát:

\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)

b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)

Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\)  \(\Rightarrow N\left(2;-1\right)\)

N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)

G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)

\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:41

Câu 3 đơn giản bạn tự làm (AC vuông góc BB' nên nhận (1;-1) là 1 vtpt, AB vuông góc CC' nên nhận (4;1) là 1 vtpt).

Câu b thì B là giao điểm AB và BB', C là giao điểm AC và CC'

Câu 4.

\(x^2+16y^2=16\Leftrightarrow\dfrac{x^2}{16}+\dfrac{y^2}{1}=1\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) \(\Rightarrow c^2=15\Rightarrow c=\sqrt{15}\)

Các đỉnh có tọa độ lần lượt: \(\left(4;0\right);\left(-4;0\right);\left(0;1\right);\left(0;-1\right)\)

Tiêu điểm: \(F_1\left(-\sqrt{15};0\right);F_2\left(\sqrt{15};0\right)\)

Độ dài trục lớn: \(2a=8\)

Độ dài trục bé: \(2b=2\)

Kimian Hajan Ruventaren
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 19:36

Lời giải:

Gọi trung điểm $AC$ là $M$.
Theo định lý cos:

$\cos B=\frac{a^2+c^2-b^2}{2ac}$. Mà theo đề thì $a=2c$ nên:

$\frac{-1}{2}=\cos 120^0=\frac{5c^2-b^2}{4c^2}$

$\Rightarrow b^2=7c^2$

Theo định lý đường trung tuyến:

$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}=\frac{c^2+4c^2}{2}-\frac{7c^2}{4}=\frac{3}{4}c^2$

$AM^2=(\frac{b}{2})^2=\frac{7}{4}c^2$

Từ những số tính toán ở trên suy ra:

$c^2+\frac{3}{4}c^2=\frac{7}{4}c^2\Leftrightarrow AB^2+BM^2=AM^2$ nên theo định lý Pitago đảo thì $ABM$ vuông tại $B$

$\Rightarrow \overrightarrow{u_{AB}}=\overrightarrow{n_{BM}}=(1,1)$

$\Rightarrow \overrightarrow{n_{AB}}=(1,-1)$

PTĐT $AB$: $(x-3)-(y-1)=0\Leftrightarrow x-y-2=0$

$B$ vừa thuộc đt $x+y-2=0$ vừa thuộc ĐT $x-y-2=0$ nên dễ tính $B(2,0)$
---------------------

Gọi tọa độ $C$ là $(t,t')$ thì tọa độ $M$ là $(\frac{3+t}{2}; \frac{t'+1}{2})$

Vì $M\in (x+y-2=0)$ nên: $\frac{3+t}{2}+\frac{t'+1}{2}=0\Leftrightarrow t'=-t$

Theo đề:

$a=2c\Leftrightarrow a^2=4c^2\Leftrightarrow (t-2)^2+(-t)^2=4[(3-2)^2+(1-0)^2]$

$\Leftrightarrow t=1\pm\sqrt{3}$

Vậy............

Nguyễn Thanh Hải
Xem chi tiết
Rin Huỳnh
23 tháng 4 2023 lúc 11:46

1D; 2D; 3D

Trương Võ Thanh Ngân
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 6 2020 lúc 23:14

Do E thuộc d nên tọa độ E có dạng \(E\left(2a+1;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BE}=\left(2a-2;a-1\right)\\\overrightarrow{CE}=\left(2a+2;a-2\right)\end{matrix}\right.\)

Tam giác BCE cân tại E \(\Rightarrow BE=CE\Leftrightarrow BE^2=CE^2\)

\(\Leftrightarrow\left(2a-2\right)^2+\left(a-1\right)^2=\left(2a+2\right)^2+\left(a-2\right)^2\)

\(\Leftrightarrow14a+3=0\Rightarrow a=-\frac{3}{14}\)

\(\Rightarrow E\left(\frac{4}{7};-\frac{3}{14}\right)\)

hồ bảo thành
Xem chi tiết
not good at math
26 tháng 2 2016 lúc 16:15

ta có pt đường cao kẻ từ B:(d1) x+3y-5=0 
vì AC _|_ (d1) và AC đi qua C(-1; -2) 
=> pt AC: 3(x+1) -(y+2) =0 
<=> 3x -y + 1=0 
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A 
=> A là nghiệm của hệ: 
{ 5x+y-9=0 
{ 3x -y + 1=0 
<=> 
x=1 ; y=4 
=> A( 1;4) 

Vì B ∈ (d1) => B(5- 3y; y) 
gọi I là trung điểm BC => I ∈ (d2) 
Vì I là trung điểm BC 
=> 
{ 2xI = xB + xC 
{ 2yI = yB + yC 
<=> 
{ xI= (5-3y-1)/2 = (4-3y)/2 
{ yI= (y -2)/2 

Vì I ∈ (d2) 
=> 5(4-3y)/2 + (y -2)/2 -9 =0 
<=> y= 0 
=> B( 5; 0) 
Vậy A( 1;4) và B( 5; 0)

Kim Hoàng Oanh
19 tháng 7 2018 lúc 9:01

Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)

Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2

Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)

Khổng Tử
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2021 lúc 14:53

Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt

Phương trình BC: 

\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\)  \(\Rightarrow B\left(2;2\right)\)

Phương trình đường thẳng d qua C và vuông góc BN có dạng:

\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)

Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)

Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB

\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt

Phương trình AB: 

\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)

A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\)  \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)

NGUYỄN MINH HUY
Xem chi tiết