Giải BPT \(\sqrt{x^2+2x-3}-2\ge\sqrt{x+3}+\sqrt{x-1}\)
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải bpt
\(\frac{\sqrt{x-3}}{\sqrt{2x-1}-1}\ge\frac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
ĐKXĐ: \(x\ge3\)
Khi đó \(\sqrt{2x-1}\ge\sqrt{5}>1\Rightarrow\sqrt{2x-1}-1>0\)
Đồng thời \(\sqrt{x+3}>\sqrt{x-3}\) \(\forall x\Rightarrow\sqrt{x+3}-\sqrt{x-3}>0\)
Do đó BPT tương đương:
\(\sqrt{x-3}\left(\sqrt{x+3}-\sqrt{x-3}\right)\ge\sqrt{2x-1}-1\)
\(\Leftrightarrow\sqrt{x^2-9}-x+3\ge\sqrt{2x-1}-1\)
\(\Leftrightarrow\sqrt{x^2-9}\ge x-4+\sqrt{2x-1}\)
Do \(x-4+\sqrt{2x-1}\ge3-4+\sqrt{5}>0;\forall x\ge3\) nên BPT tương đương:
\(x^2-9\ge x^2-8x+16+2x-1+2\left(x-4\right)\sqrt{2x-1}\)
\(\Leftrightarrow\left(x-4\right)\sqrt{2x-1}-3\left(x-4\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(\sqrt{2x-1}-3\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2x-1-9}{\sqrt{2x-1}+3}\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\le0\Leftrightarrow4\le x\le5\)
Giải bpt: \(\sqrt{x^2+x}+\sqrt{x-2}\ge\sqrt{3\left(x^2-2x-2\right)}\)
Giải bpt: \(\dfrac{\left(3-2x-x^2\right)\sqrt{2x-1}}{\sqrt{2x-1}}\)≥0
\(\sqrt{2x-1}\ge0\)
\(\Rightarrow BPT\ge0\) khi
\(3-2x-x^2\ge0\)
\(\Leftrightarrow x^2+2x-3\le0\)
\(\Leftrightarrow\left(x+1\right)^2-4\le0\)
\(\Leftrightarrow\left(x+1\right)^2\le4\)
\(\Leftrightarrow x+1\le2\)
\(\Rightarrow x\le1\)
\(\sqrt{x-3}-2\ge\sqrt{2x^2-6x+14}-x\)
giải bpt
giải BPT :
a. \(\sqrt[3]{x+6}+\sqrt{x-1}\ge x^2-1\)
b.2\(\sqrt[3]{x+4}+\sqrt{2x+7}+x^2+8x+13\)
c.\(4x^3+5x^2+1\ge\sqrt{3x+1}-3x\)
giúp với ạ
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)